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SUMMARY 

Several new methods are developed in this report for 
characterizing atmospheric turbulence, estimating the para- 
meters of these characterizations using modern statistical 
methods, and computing relevant aircraft response statistics 
to such turbulence.* 

In Section 1 of the report, a nongaussian model of atmos- 
pheric turbulence is postulated that accounts for readily 
observable features of turbulence velocity records, their 
autocorrelation functions, and their spectra. New methods 
for computing probability density functions and mean exceedance 
rates of a generic aircraft response variable are developed in 
Sections 2 and 6 respectively. In Section 3, a new method is 
developed for maximum likelihood estimation of the parameters 
of a spectrum of known functional form - i.e., the von Karman 
transverse and longitudinal spectral forms. Formulas for the 
variances of such estimates of the integral scale and intensity 
are derived in Section 5. The maximum likelihood method is 
combined with a least-squares approach to yield a method for 
estimating the autocorrelation function parameters of a two 
component model of turbulence in Section 4. Various related 
problems are treated in the Appendices. Implementation of 
the methods to turbulence velocity records is documented in 
another report. 

*Sections 1 through 4 and Appendices A through E of this 
report were completed and submitted to NASA for review 
in May 1978, Section 5 was submitted to NASA in November 
1978, and Section 6 and Appendices F through K were sub- 
mitted in October 1980. 



TURBULENCE MODEL 

In early aeronautical work, turbulence records were 
described as gusts. For purposes of computing wing stresses 
etc., these gusts were modeled in the 1930's and 1940's as 
deterministic functions of time - e.g., Ref. 1. 

During this same period of time, a great deal of funda- 
mental work on the mathematical description of statistical 
phenomena was carried out. Basic mathematical theory of 
stationary time series was developed by Wiener [2,3], Khint- 
chine [4], and Rice [s]. Wang and Uhlenbeck [6] provide an 
excellent description of the state of development in 1945. 
Useful aspects of this work were soon applied to engineering 
problems - e.g., James, Nichols, and Phillips [7]. The 
statistics book by Cramer [8] is a classic. 

Also, during this same general period, significant pro- 
gress was made by Taylor [9,lO] and von Karman [Al] in pro- 
viding a statistical representation of turbulence. Auto- 
correlation functions and power spectra play a fundamental 
role in these representations. An early study of the power 
spectra of turbulence records was carried out by Clementson 
Cl21. 

A principal reason why the power spectrum is so useful 
a description of random processes is that it possesses exact 
input-output relationships for linear time-invariant systems - 
the power spectrum of the output is the power spectrum of the 
input multiplied by the square of the magnitude of the system 
frequency response function. Lin [Z3] generally is given 
credit for being the first to compute the output (correlation 
function) of a mechanical system from a comparable description 
of its input. Liepmann [14] applied these ideas to the pro- 
blem of buffeting. 

Thus, by the early 1950's a methodology existed for 
computing response statistics of an aircraft from a statis- 
tical description of the turbulence excitation provided 
either by the autocorrelation function or its Fourier trans- 
form, the power spectral density. If the turbulence excita- 
tion is assumed to be stationary and Gaussian, and the air- 
craft is modeled as a linear time-invariant system, then 
the response process also is stationary and Gaussian. In 
this case, the power spectrum of the response provides a 
complete statistical description of the response process. 

However, many turbulence records have a generally non- 
stationary appearance. This nonstationary appearance was 

2 
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taken into account by Press et aZ. CIA'] by modeling turbulence 
records w(t) as homogeneous Gaussian processes with slowly 
varying standard deviations - i.e., 

w(t) = u(t) z(t) , (1.1) 

where z(t) is a stationary Gaussian process with zero mean 
value and unit variance, and a(t) is a nonnegative function 
of time that may be regarded as being either deterministic 
or stochastic. Considerable effort has gone into computation 
of the response statistics of aircraft using the above model. 
Much of this work was done by Press [ISI and Houbolt [zs]. 
Rice's famous formula [s] for the expected number of crossings 
of a stationary random function past a specified threshold 
plays a central role in these studies. Sidwell [I73 has 
described Eq. (1.1) as the Press model of turbulence. 

The studies of aircraft response statistics using the 
model of Eq. (1.1) implicitly assume (i) that fluctuations 
in a(t) occur slowly in comparison with those of z(t), and 
(ii) that variations in a(t) are negligible over durations 
comparable with aircraft impulse- response-function durations. 
Conditions for the validity of assumption (i) are given by 
Mark and Fischer [I&?] and those for the validity of (ii) are 
given by Mark in [IS]. When these conditions are satisfied, 
one requires only the power spectral density of z(t) and the 
probability density function of u2(t> to determine the level 
crossing rates and probability density function of an air- 
craft response variable of interest. The most pertinent 
information about the probability density of u2(t> is con- 
tained in its mean value and second moment [19]. 

One cannot help but inquire how far we can progress 
toward computing aircraft response statistics by dropping 
the model of Eq. (1.1) and assuming only that the turbulence 
constitutes an arbitrary (generally nonGaussian) stationary 
random process. This question was addressed by Mazelsky [2U] 
in 1954 and slightly earlier in the Russian literature - in 
a more general context - by Kuznetsov and his associates [22]. 
Mazelsky and Kuznetsov showed that higher-order autocorrela- 
tion functions which are time-averaged lagged products ob- 
tained by multiplying turbulence records by themselves 
three, four, and more times also possess exact input-output 
relations - as do their various multidimensional Fourier 
transforms. However, computation times, problems of statis- 
tical confidence of estimates of these characterizations 
obtained from turbulence records of finite duration, and 
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problems of interpretation collectively make these higher- 
order correlation functions and spectra much less attractive 
for the characterization of measured records than the con- 
ventional autocorrelation function and power spectral density. 

Our approach, therefore, is to postulate a turbuZence 
mode2 sufficientzy genera2 to include a22 readiZy observable 
features of measured turbulence records important to aircraft 
responses, and to develop turbuzence characterizations from 
this mode2 that have input-output relations sufficientzy 
genera2 to predict output probabizity density functions and 
threshold crossing rates for arbitrary aircraft response 
variabZes. A requirement of these turbuZence charaeteriza- 
tions absoZuteZy essentia2 for practical appZication is that 
it be possible to generate realizations of these eharacteriza- 
tions from measured turbuzence records. 

Three Component NonGaussian Turbulence Model 

The simplest model of turbulence as a stochastic process 
is that of a stationary Gaussian process. The vertical 
record shown in Fig. 1 (Ref. 22) illustrates a turbulence 
record that would appear to be reasonably well modeled as a 
stationary Gaussian time history - especially the portion of 
the record from 120 to 270 see elapsed time. We might 
reasonably model this record using Eq. (1.1) with u(t) taken 
to be a constant. However, most records of atmospheric tur- 
bulence have a general appearance that is closer to that 
shown in Fig. 2 (Ref. 22). Notice, for example, that the 
portion of the vertical record between 135 and 145 see elapsed 
time has a relatively small rms value; whereas, patches with 
much larger rms values occur shortly thereafter in the 
neighborhoods of 150 and 160 set elapsed time. Such behavior 
cannot be modeled by a stationary Gaussian process, but can 
be reasonably modeled by Eq. (1.1) when u(t) is allowed to 
depend on time. 

Each of the records shown in Fig. 2 also exhibits an 
additive weak low-frequency component that appears to fluc- 
tuate independently of the occurrence of the patches. For 
example, during the 5-see interval between 183 and 188 set 
elapsed time on the vertical record, high-frequency fluc- 
tuations are absent; however, there remains in that interval 
a fluctuating weak low-frequency component. Similar but more 
pronounced behavior of this type occurs between approximately 
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96 and 99 set elapsed time on the vertical record shown in 
Fig. 3 (Ref. 22). High-frequency fluctuations are absent in 
that interval; however, there exists there a relatively strong 
low-frequency component. Such behavior cannot be modeled by 
Eq. (1.1). Many other excellent records showing similar 
behavior may be found in Ref. 22. 

The above discussion suggests that we add a low-frequency 
component to the model of Eq. (1.1) - i.e., that we postulate 
a turbulence model [19] of the form 

w(t) = w,(t) + w,(t) (1.2a) 

= w,(t) + o,(t) z(t) ) (1.2b) 

where 

w,(t) = o,(t) z(t) , q(t) 2 0 , (1.3) 

and 

E{z(t)) = 0 , E{z'(t)) = 1 . (1.4) 

In Eq. (1.2a), ws(t) is the "slow" (low-frequency) component 
and wf(t) is the "fast" intensitv modulated component described 
by Eq. (1.3). Since well-behaved turbulence records such as 
the portion of the vertical record shown in Fig. 1 between 
120 to 270 set elapsed time generally have Gaussian (first- 
order) probability density functions, we shall further assume 
that the stochastic process z(t) in the above model is sta- 
tionary and Gaussian. In some of the work to follow, we 
also shall assume that ws(t) is a stationary Gaussian process. 
Thus, the processes {w,(t)) and {z(t)} are fully described 
by their power spectral densities or autocorrelation func- 
tions. We also shall generally assume that cf(t) is a 
stationary random process; however, since of(t)>O, we shall 
not assume that of(t) is Gaussian. Furthermore, the three 
processes {w,(t)}, tcf(t)J, and {z(t)) will be assumed to be 
statistically independent. 

Each of the turbulence records shown in Fig. 4 (Ref. 23) 
clearly illustrates the three turbulence components w,(t), 
cr(t), and z(t) in the model of Eq. (1.2). Notice that 
throughout each entire record a strong low-frequency component 
w,(t) is present. However, for example, between 9 min 0 set 
and 9 min 45 set on each record, wf(t) is negligible in 

7 



W 

24.4 
2 12.2 
s -12.2 0 

‘jf -24.4 
!I 

g 
ii 
> 24.4 
k 12.2 

z 0 
a -12.2 

-24.4 

FIG. 3. TURBULENCE RECORDS WITH ADDITIVE LOW-FREQUENCY COMPONENTS PRESENT. 
(Ref. 22, Fig. 17.34, p. 225.) 



-20 L 

20 

go 

-20 

20 

-20 

1 
5 

Gk 
-5 

1 
5 

03% 
-5 

IIIII IIIIIIIlllIIIIIIIIlllll~ll~~lJll~~~~1ll~l~~lll~ ““’ llllllllllli-lllll 
0 1 2 3 Y 5 

T 
Ik 

- 
;INU~ES 9 10 11 12 13 

FIG. 4. TURBULENCE RECORDS CONTAINING THE INDIVIDUAL COMPONENTS 
\D ws(tL q(t), AND z(t) IN THE THREE COMPONENT MODEL OF EQ. ~b2). 

[MOUNTAIN WAVE CONDITIONS. AIRCRAFT SPEED 197 m/set (646 ft/sec).] 
(Ref. 23, Fig. 10, p. 285.) 



comparison with ws(t); whereas, between about 9 min 45 set 
and 10 min 45 set, wf(t) grows and then decays back to a 
small value again. Such behavior is controlled by the temporal 
variations in of(t). None of the three records shown in Fig. 
4 could satisfactorily be modeled by a single stationary 
Gaussian process - or by the process model of Eq. (1.1). 
Equation (1.2) is the simpZest model capable of describing 
the overaZZ turbulence behavior illustrated in Fig. 4. 

LocaZZy stationary assumption. For much of the work to 
follow, we shall further assume that fluctuations in of(t) 
occur slowly in comparison with those of z(t). The quanti- 
tative statement of this assumption [Z8,19] must be made in 
terms of the power spectral density of the process {z(t)}. 
Let Qz(f) be the two-sided power spectral density of {z(t)), 
which we define here as the Fourier transform of the auto- 
correlation function of {z(t)} - i.e., 

co 

a,(-~) e-i2TfT dT , 

where 

Also 

Then 

G,(T) A ECz(t) z(t+-r)} . 

let Oi2) (f) be the second derivative of Qz(f): 

@:2)(f) : &- Qz(f) . 
df' 

our locally 

d2Rn o:(t) 

dt2 

(1.5) 

(1.6) 

(1.7) 

stationary assumption may be expressed as 

CC 32~~~ 
(azU) 

/m(')(f)j . 
Z 

(1.8a) 

The requirement of Eq. (1.8a) is derived and discussed in 
Ref. 18 and is further discussed in Ref. 19. See, in parti- 
cular, Eq. (4.53) and PP. 43 to 53 of Ref. 18. When Qz(f) 
has the form of the von Karman transverse spectrum, with 
integral scale Lz, it is shown in p. 51 of Ref. 19 that the 
requirement of Eq. (1.8a) reduces to 
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d2Rn at(t) 

dt2 
(1.8b) 

where V is the aircraft speed. This requirement is more 
meaningfully expressed in terms of of written as a function 
of the spatial variable x = Vt: 

d2Rn 0:(x/V) 

dx2 

The exampZes of th 

< 0.08 (1.8~) - 
L; * 

is requirement discussed on pp. 43 to 50 of 
Ref. 18 show that when a typica Zength scaZe L, of the func- 
tion af(x/V) is at Zeast 10 times Lz, the loealZy stationary 
assumption of Eq. (1.8) is weZZ satisfied. 

A more relaxed locally stationary condition expressed in 
terms of the autocorrelation function of Rn o;(t) and the 
aircraft frequency response function of interest is given by 
Eq. (5.17) on p. 56 of Ref. 19. An expression for the auto- 
correlation function of Rn o+(t) in terms of measurable 
quantities is given by Eq. (5.36) on p. 61 of Ref. 19. 

For typical atmospheric turbulence records, the locally 
stationary assumption of Eq. (1.8) is believed to introduce 
negligible error in the results to follow. The simulation 
studies carried out in Ref. 24 support this conclusion. 

Spectral form of z(t). In some of the work to follow, 
we shall assume that the process {z(t)) has the appropriate 
(transverse or longitudinal) von Karman spectral form. When 
the locally stationary condition of Eq. (1.8) is satisfied, 
it is shown in Ref. 18 that the spectral form of wf(t) = af(t)x 
z(t) is unaffected by the fluctuations in of(t) - i.e., 
wf(t) will have the same form of spectrum as {z(t)}. 

Comparison with previous reZated modeZs. A three- 
component turbulence model functionally similar to Eq. (1.2) 
has been studied by Reeves et aZ. [Z&-27] and Sidwell [28]. 
However, both Reeves and Sidwell assume that their counter- 
part to our of(t) is a Gaussian process with zero mean value. 
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This restriction forces their counterpart to wf(t) to have 
periods of very low intensity [when of(t) is near its mean 
value of zero]. Reeves motivation [25--271 for adding his 
counterpart to ws(t> is to partially remove such "deep fades." 
Thus, in Reeves' model, the power spectra of his counterparts 
to ws(t> and wf(t) are taken to have the same Dryden form. 

On the other hand, our approach in Refs. 18 and 19, and 
in the present work, is to introduce a minimum of assumptions 
pertaining to the behavior of of(t) and w,(t) and to extract 
descriptions of these processes relevant to the aircraft 
response problems from measured turbulence records. Algo- 
rithms for computing the power spectra of z(t), ws(t>, and 
apt>, and for computing moments and probability density 
functions of ws(t) and al(t) are provided in Sec. 6 of Ref. 
19. Some of these techniques are modified and extended in 
the present work. 

Aircraft Response Metrics 

Aircraft mode'2. It is our goal to develop expressions 
for the (first-order) probability density functions and the 
threshold mean crossing rates for a general aircraft response 
variable - using the above described model of turbulence as 
the excitation or input. We shall model the aircraft as a 
linear two-terminal time-invariant system described either 
by its unit-impulse response function h(t) or complex frequency 
response H(f): 

J 
co 

H(f) 4 h(t) e 
-i2nft dt . 

(1.9) 
-co 

For any turbulence sample function w(t), the aircraft response 
y(t) is the convolution of w(t) and h(t) - i.e., 

O3 y(t) = J h(T) w(t-T> d-r (l.lOa) 
-03 

J 
co = W(T) h(t--r) dT . 

-00 
(l.lOb) 
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Implicit in this treatment is the assumption that the spatial 
variation of w(t) is negligible over dimensions comparable to 
those of the aircraft. The aircraft impulse response may 
represent the response of any aircraft variable of interest - 

the stress at a critical point in a wing span - to the 
teSb:lence velocity input w(t). The impulse response h(t) 
may include the action of a pilot or autopilot modeled as a 
linear feedback element. That is, h(t) may be thought of 
as either an open or closed loop unit-impulse response func- 
tion. 

Autocorrelation function input-output relationship. It 
is well known - e.g., p. 71 of Ref. 29 - that the power 
spectral density Qy(f) of the aircraft response y(t) is re- 
lated to the input power spectrum Qw(f) and aircraft frequency 
response H(f) by 

Qy(f) = Qw(f) IH(f) I2 . (1.11) 

Let Qw(~> and ey(-c) denote, respectively, the autocorrelation 
functions of the excitation and response processes {w(t)) 
and {y(t)): 

J 

m 

QwW = Ow(f) ei2'rrf' df (1.12) 
-00 

J 
co Q,(T) = @y(f) ei2'rrf'r df . (1.13) 

-a, 

Then, from the convolution theorem and Eq, (l.ll), it follows 
that the autocorrelation function input-response relation- 
ship is the convolution 

J 
cu 9,w = @&-6) (bw(<) dS (1.14a) 

-co 

J 
co = @,(6-d (p,(E) dg (1.14b) 

-co 

J 
00 = @+t+‘) t),(s) d5 , (1.14c) 

-co 
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where 

J 
co $.,h) ’ -oo IH( ei2TfT df , (1.15a) 

J 
co = h(t) h(t+T) dt , (1.15b) 

-00 

and where Eq. (1.14b) follows from Eq. (1.14a) and the fact 
that the autocorrelation function @h(T) is an even function 
of T, and Eq. (1.14~) follows from the fact that Gy(~) is an 
even function of T. 

Since we have assumed that the turbulence components 
{w,(t)), {of(t)), and {z(t)) are mutually statistically in- 
dependent, it follows that {ws(t)) and {wf(t)Ialso are mutually 
independent (and therefore uncorrelated). 
(1.2) it follows that 

Therefore, from Eq. 

@w(T) = Qw CT) + Qw (T) 
S f 

(1.16a) 

(1.16b) 

where the second line is a consequence of Eq. (1.3) and the 
assumed independence of {a,(t)} and {z(t)}. Moreover, from 
the locally stationary assumption of Eq. (1.8) it follows 
[181 that 

(1.17a) 

(1.17b) 

= E{o;) G,(T) ; (1.17c) 

hence, we have from Eqs. (1.16~) and (1.17~) 

(1.18) 
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That is, our turbuzence model of Sec. 1.1 impZies that the 
autocorreZation function of the turbulence Iw(t)l wiZZ appear 
as a superposition of the autocorrelation function of the 
SZOW component w,(t) and an amplitude scaZed version of the 
autocorrelation @,(-t).of the Gaussian component z(t). 

The behavior of our turbulence model described by Eq. 
(1.18) is illustrated in Fig. 5 for idealized autocorrelation 
functions. Notice that Qws(~) is shown decaying much more 
slowly than Gz(~). This latter behavior is consistent with 
our assumption that the process w,(t) fluctuates slowly in 
comparison with the process z(t) - as is evident from the 
record shown in Fig. 4. In fact, w,(t) may be thought of as 
a slowly varying mean wind; whereas, wf(t) = of(t) z(t) may 
be thought of as ordinary turbulence. 

Substituting Eqs. (1.16 to 1.18) into Eq. (l.lQc), we may 
express the aircraft response autocorrelation function as 

O3 ‘py(T) = I dje$+T) bw (c) + @w (1.19a) 
S -03 

J 

00 
= @,(gfT) b, (c) + @,f(E) @,(<)I d< (1.19b) c 

(<> + Eb; 1 Q,(c)1 d< (l.l9c) 

which are the desired autocorrelation function input-response 
relationships. Equations (l.lga) and (l.lgb) are an exact 
consequence of the turbulence model described by Eq. (1.2) 
and the assumed independence of {w,(t)), {of(t)}, and {z(t)); 
whereas, in Eq. (l.lgc), the locally stationary assumption 
of Eq. (1.8) has been used. 

Aircraft mean-square dispzacement and velocity responses. 
Setting T = 0 in Eq. (1.19) directly yields the mean-square 
aircraft displacement response in terms of the turbulence 
component autocorrelation functions: 
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FIG. 5. IDEALIZED SKETCH OF AUTOCORRELATION FUNCTION OF ATMOSPHERIC TURBULENCE 
AND AUTOCORRELATION FUNCTION OF ITS COMPONENTS. 



E{y2) q 8,(O) 

(1.20a) 

(1.20b) 

(1.2oc) 

where the approximation of Eq. (1.20~) again depends on the 
locally stationary assumption of Eq. (1.8). 

Comparable expressions may Qe written for the aircraft 
mean-square velocity response E{y2). If we formally dif- 
ferentiate Eq. (l.lO), we obtain 

J 
co P(t) = W(T) &t-T) dT , (1.21) 

--co 

where 6(t) is the time derivative of the displacement impulse 
response h(t). Since some h(t) of interest may contain dis- 
continuities - e.g., at t = 0 - care must be taken in computing 
h(t). That is, R(t) must satisfy 

J t h(t) = 6(E) dS . (1.22) 
-a, 

Thus, if h(t) has a discontinuity then h(t) must contain a 
delta function at the same place so that Eq. (1.22) is 
satisfied. 

As in Eq. (l.l5b), we may define for h (t> 

6(t) li(t+T> dt . (1.23) 
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The mean-square velocity response may then be expressed in 
the same manner as in Eq. (1.20): 

E{i2) q @i(O) 

J 
03 = 4+$<) bw (5) + Gof(S) G,(E)] dS 

S -00 

(1.24a) 

(1.24b) 

(1.24~) 

where the approximation of Eq. (1.24~) again depends on the 
locally stationary assumption of Eq. (1.8). 

Parametric Description of Atmospheric Turbulence 

In order to tabulate relevant features of measured tur- 
bulence records, it is necessary to characterize such records 
by a set of parameters that can be extracted from the records. 
The integral scale and mean-square value of a record are 
examples of such parameters. 

Characterization of ".sZow" component w,(t). The NASA MAT 
program (Measurement of Atmospheric Turbulence) [30] has 
concentrated on obtaining atmospheric turbulence recordings 
accurate to frequencies (wavenumbers) well below typical 
positions of the "knees" of von Karman spectra. This effort 
has reouired exceptional care in aircraft instrumentation [32]. 
Typical autocorrelation functions computed from MAT records 
suggest that an efficient characterization of autocorrelation 
function c$~,(<) of the low-frequency component w,(t) is a low- 
order polynomial approximation to Gw (5) valid in the neigh- 
borhood of 5 = 0 [pp. 64,65 of Ref. :91. Although this low- 
order polynomial representation may be interpreted as the 
first few terms of a Maclaurin expansion of $w (<), we shall 
use a (constrained) least-squares procedure toScompute the 
actual expansion coefficients as described in Sec. 4 of 
this report. 
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Figure 6 displays the,autocorrelation function of the 
vertical record shown in Fig. 4. According to Fig. 6, about 
78% of the "power" in the. vertical record of Fig. 4 is in 
ws(t> and about 22% is in wf(t). 

To motivate our concentration on c$~(<) in the region of 5 
near the origin, we note first that to predict the first-order 
probability density functions and threshold mean crossing 
rates of aircraft responses, we require Ecy2} and E{jr2) [pp. 
34-50 of Ref. 19-i. Expressions for these quantities are 
given by Eqs. (1.20) and (1.24) of this report. If we de- 
compose E{y2) and E{i2} into contributions from our "slow" 
and "fast " components ws(t> and wf(t),respectively, 

E(y2j = E{y;) + E{Y;) (1.25) 

and 

E{;r2} = EC;;) + EC;;} , (1.26) 

then we see from Eqs. (1.20) and (1.24) that the slow component 
contributions are given by 

J 
02 

ECY;) = @h(t) aw (5) dS (1.27) 
S -00 

(1.28) 

Let us now assume - f?r the purposes of the present discus- 
sion - that h($) and h(t) are of duration Th set only - e.g., 
that h(t) and h(t) are zero outside-the interval O<t<Th. 
Then, it is easy to show from Eqs. (1.15b) and (1.237, re- 
spectively that @h(c) and @A(C) are zero for l<l>T . - 
sequently, from Eqs. (1.27) and (1.28), we see that E{ii? 
and E{$g} depend on the values of $I~~(<) only for values 
of 5 satisfying l<lzT,. 

> 
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As an example 1231, we consider an aircraft flying at 
Mach 2.7 at an altitude of 18 km (60,000 ft) where the speed 
of sound is approximately 297 m/set (975 ft/sec). If we take 
T = 3 set, then the correlation interval of interest is about 
2 $ 00 m (7900 ft). 'On the other hand, if we take Th = 10 set, 
the correlation interval of interest is about 8000 m (26,200 
rt). For the autocorrelation function displayed in Fig. 6, 
we see that, for the j-see impulse response, a linear approxi- 
mation to (pw provides a good fit; whereas, for the lo-see 

S 
impulse response, a quadratic approximation would be adequate. 
Consequently, we shall take for our parametric representation 
~ws(~, of ow (El: 

S 

9, (5) ' T ajSj 3 

S j=O 
(1.29) 

where the degree m chosen for the above polynomial representa- 
tion of Gws(c) is to depend on the observed complexity of 
aws(<) and the interval in 5 over which $w (5) is to be 

S 
represented by Eq. (1.29). 

Two fundamentally different approaches may be used in 
generating the representation of Eq. (1.29). On the one hand, 
we may take the expansion interval as O<c<Th and include both -- 
odd and even powers of 5 in the expansion. This procedure 
clearly is the best for the autocorrelation function shown in 
Fig. 6. On the other hand, we may take for the expansion 
interval, the even interval -Thl<(Th. Since, by definition, 
$ws(<) must be an even function of 5, this latter approach 
must contain only even powers of 5. Generally, the latter 
approach will require higher powers of 5 to get a good fit 
using Eq. (1.29) - i.e., a larger value of m - but it has 
the advantage that the integrals obtained by substituting 
Eq. (1.29) into Eqs. (1.27) and (1.28) are, in some situa- 
tions, more easily evaluated. 

The reader may wish to interpret Eq. (1.29) as a trun- 
cated Maclaurin series expansion. In the first of the above 
two approaches where Eq. (1.29) applies to the interval 
O<<<Th, -- the derivatives of Gw (c> in the interpretation must 
be considered as one-sided dezivatives valid only in the 
region <>O - i.e., we have aj = $I (j) (0+)/j!, where + (j)(o+) - 
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denotes the jth order derivative evaluated at 5 = O+. In 
the second of the above two approaches where Eq. (1.29) ap- 
plies to the interval -Thf<LTh, we have aj = $ (j)(O)/j!, 
where here no "one-sided condition" is required since, in this 

interpretation, it is assumed that @(j)(c) is continuous at 
5 = 0 for j = 0,1,2,...,m. 

Since the integrands of Eqs. (1.27) and (1.28) are 
necessarily even, our estimates of E{yg} and E{$i} obtained 
using Eq. (1.29) may be expressed as 

EC+ 2 2 Y aj Jm 
j=O 

$ @h(c) dS 
0 

(1.30) 

and 

E{$ z 2 F aj Jm $ h$, d5 . (1.31) 
j=O 0 

Equations (1.30) and (1.31) are valid for either of the above 
types of expansion. However, from the Fourier mate to Eq. 
(l.l5a), we have 

co IH( = J $,(E) e-i2'fS d< . 

Differentiating-iq. (1.32) j times, we find 

dj IH(f) I 2 = (-i2T)j J 
co 

dfj 
gj Q,(c) e-i2'rrfS d< ; 

-03 

hence, setting f = 0 in Eq. (1.33), we have 

J 
co 

$ $,(E) dc = ' j dJIH!f)12 . 
-03 (-i27T) dfJ f=O 

(1.32) 

(1.33 > 

(1.34) 

For j = odd, both sides of Eq. (1.34) vanish; however, for 
j = even, we have 

J 
co 6 @h(t) dS = 2 J 

co 6 a,(<) dS , j = even. (1.35) -m 0 
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Thus, t 
IH(f) 1 2 

he terms j = even in Eq. (1.30) may be evaluated from 
using Eqs. (1.34) and (1.35). Furthermore, for well- 

behaved h(t), we have from the Fourier mate to Eq. (1.9): 

J 
co Ii(t) = i2nfH(f) e i27rft df . 

I) 
-co 

(1.36) 

hence, i2nfH(f) is the Fourier transform of i(t). It follows 
from this fact and Eq. (1.34) that 

J O" $ c)*(c) dc = 4.rr2 . h ,j /fH(f)l2( 
(-i2n)J dfJ f=O . -co 

(1.37) 

For j = odd, both sides of Eq. (1.37) vanish; however, for 
j = even, we have 

The terms j = even in Eq. (1.31) may be evaluated from IH( 
using Eqs. (1.37) and (1.38). 

For situations where odd powers of j are included in 
Eqs. (1.30) and (1.31), a different approach is available 
for evaluating these expressions. We may decompose ey(~) 
into components arising from w,(t) and wf(t) where, from 
Eq. (1.19a>, we see that the contribution from w,(t) can be 
written as 

a3 9, C-r) = 
S J $,(5+-r) Qw (5) dS - 

S -co 

Differentiating Eq. (1.39) twice yields 

(1.39) 

(1.40) 
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where we note that 

E{;;] = -$; (0) = - O3 $!$, @,/) dS , J (1.41) 
S -03 

see - e.g., p. 33 of Ref. 18. In regard to the behavior of 
t$#.) at 5 = 0, we point out that inclusion of mass or inertia 
in the aircraft impulse response h(t) guarantees continuity of 
Q"(E) at 5 = 0. 

9 
since @h(c) is an even function of 5, (p{(c) 

a so must be even; hence, we may rewrite Eq. (1.41) as 

J 
03 

E{$t = -2 $;'C' 4~~ (El d5 , 
0 

S 

(1.42) 

while, from Eq. (1.39), we may express E{yg) s $y (0) as 
S 

J 
co 

EEy;} = 2 G,(5) Gw (5) d5 . (1.43) 
S 

0 

Combining Eqs. (1.43) and (1.42) with Eq. (1.29) yields 

ECy;) =2 y ajJ =ij @ 
j=O h (5) d5 9 

0 

and 

EC;;) " -2 i aj Ja 
j=O 

tj 4$(E) dS , 
0 

(1.44) 

(1.45) . 

where Eqs. (1.44) and (1.45) are valid for cases where both 
odd and even powers are included in Eq. (1.29), or cases 
where only even powers are included. Furthermore, it is 
possible to avoid taking momen, f-s of the derivatives of @h(E) 
as we now show. Using integration by parts, we have 
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= -j J mgj-l 4+!,(E) dS , j 2 1 , (1.46) 
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since the first term in the right-hand side of the first line 
vanishes for j21. Repeating the integration by parts on the 
right-hand side of Eq. (1.46), we further have 

J 
co 

$ @E(E) dS = -j <j-l @h(c) lm-(j-l) Jmgj-2Qh(<) dc 
0 0 0 1 

= j(j-1) J mgj-2 (bh(<) dS , j 12 , (1.47) 

0 

since the first term in the right-hand side of the first line 
vanishes in this case for j>2. Combining Eqs. (1.46) and 
(1.47) with Eq. (1.45) yields 

+ !f j(j-1) aj Jm <jD2 Q,(E) d< . 
j=2 

0 1 
(1.48) 

Equations (1.44) and (1.48) are particularly suitable for 
computing E{yk) and E{$g) in cases where the "one-sided" 
expansion including odd powers of 5 is used in Eq. (1.29). 
In view of the fact that the first or higher order derivatives 
of turbulence autocorrelation functions may not be continuous 
at 5 = 0, representation of @ws(<) over the interval O<<<Th -- 
by Eq. (1.29) using odd as well as even powers of 5, and then 
computing ECyi) and E{jrg) with Eqs. (1.44) and (1.48) is 
probably the best overall method. It is easy to relate the 
moments in the right-hand sides of Eqs. (1.44) and (1.48) to 
derivates of the unilateral Laplace transform of @h(E) - 
which may be useful in evaluating the moments. 

The autocorreZation function @w,(5) of the "SZOW" com- 
ponevt w,(t) contains compZete information about the power 
spectrum of w,(t), because the two are a Fourier transform 
pair. The most usefu2 general set of parametric descriptors 
of this Fourier transform pair appears to be the set of co- 
efficients a., j=O,l,. a-3 m of a power series representation 
of @w,(S). I4 ince #w (5) is necessarizy an even function of 5, 

S 
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this representation may be chosen to approximate c$~,(E) over 
either O<<<Th or -Th<c<Th, where Th is the duration of the -- -- 
aircraft impulse response of interest. The representation 
over O<c<Th generally wiZZ be preferable because of its more -- 
rapid convergence. In this ease, Eqs. 
be used to compute E{yz} and E{gi}. 

(1.44) and (1.48) may 
However, the representa- 

tion Over the interval -Thl<lTh permits evaluation Of all 
integrals in Eqs. (1.30) and (1.31) directly from the squared 
aircraft frequency response magnitude IH(f) I2 using Eqs. 
(1.341, (1.35), (1.37), and (1.38). 

In addition to a representation of $J~,(<), we shall re- 

quire the first few moments of the probability density of 
w&L say the first four, in order to verify the Gaussian 
property of ws(t>. A method for computing these moments and 
forming an approximation to the first-order probability den- 
sity of ws(t> is described in Sec. 6.4 of Ref. lg. 

Characterization of stochastic intensity of(t) of the 
"fast" component wf(tl. The locally stationary assumption 
of Eq. (1.8) of this report involves only turbulence charac- 
teristics. For this assumption to be satisfied, variations 
in the intensity af(t> of the fast component must be small 
over intervals comparable with the integral scale or nominal 
correlation interval of the component z(t). Two additional 
locally stationary conditions were studied in Ref. lg. These 
additional two conditions are given by Eqs. (3.43) and (3.46) 
on p. 32 or Eqs. (5.9) and (5.10) on p. 54 of Ref. 19. 
Equations (5.9) and (5.10) are a statement of these conditions 
for engineering purposes, and are somewhat more easily satis- 
fied than Eqs. (3.43) and (3.46). The physica interpretation 
of the combination of these two additional conditions is 
that variations in of(t) must be negligible over durations 
comparabze to the duration Th of the aircraft impulse response 
function of interest. Thus, satisfaction of these additional 
two locally stationary conditions depends on aircraft charac- 
teristics as well as the behavior of the turbulence component 
qa>. 

For situations where these additional two locally sta- 
tionary conditions are satisfied, it was shown in Sets. 4.1 
to 4.4 of Ref. 19 that the first-order probability density 
function and threshold mean crossing rates of an aircraft 
response variable can be computed from the probability density 
function of 0;; and furthermore d that the first few moments 
of the probability density of of provide the most important 
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parametric descriptions of at(t). Although a careful study 
of these additional locally stationary conditions involving 
recorded turbulence data and actual aircraft characteristics 
has not been made, we generally tiould expect these additional 
two locally stationary conditions to be satisfied for sub- 
sonic aircraft for engineering purposes. However, these 
additional.two conditions may not be satisfied in the case 
of supersonic aircraft. 

It will be shown in later sections of this report that 
when the additional two locally stationary conditions are not 
satisfied, we shall require the power spectral density Q,%(f) 
or autocorrelation function QO*;(~) of crG(t) to predict 
the most important nonGaussian correction terms for the first- 
order probability density of an aircraft response variable. 
The most important parametric descriptors of Qa2(~) are the 
first few "one--sided" or "two-sided" power seriefs expansion 
coefficients of $o;(~) - as was the case for aws(~). 

Characterization of stationary Gaussian component z(t) 
of the "fast" component wf(t). Since z(t) is, by hypothesis, 
a stationary Gaussian process with zero mean value and unit 
variance, it is completely described by its power spectral 
density or autocorrelation function. In our computational 
work, we shall assume that z(t) possesses the appropriate 
(transverse or longitudinal) von Karman spectral form. For 
these cases, z(t) is completely described by a single para- 
meter - the integral scale Lz of the appropriate transverse 
or longitudinal von Karman spectral form. 

Summary of Turbulence Model Characterizations 

Basic Mode2 

w(t) = w,(t) + es,(t) z(t) 

a,(t) ' 0 , - E{z) = 0 , ECz21 = 1 , 

w,(t) stationary and Gaussian , 

a,(t) stationary, 
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z(t) stationary and Gaussian 

w,(t), u,(t), and z(t) mutually independent. 

"CompZete" Characterization of Model 

Component Characterization 

w,(t) P.S.D. or Autocorrelation func- 
tion of ws(t>, (Also P.D.F. of 
ws(t) to "check" Gaussian 
Assumption.) 

O;(t) 

z(t) 

P.S.D. or Autocorrelation Func- 
tion of o:(t), P.D.F. of a;(t). 

P.S.D. or Autocorrelation Func- 
tion of z(t). 

Parametric Characterization of Model 

Component Characterization 

w,(t) "One-sided" or "two-sided" power 
series expansion coefficients 
of autocorrelation function of 
ws(t>, (Al so first few moments 
of P.D.F. of w,(t) to check 
Gaussian assumption.) 

opJ) 

z(t) 

"One-sided" or "two-sided" power 
series expansion coefficients 
of autocorrelation function of 
a;(t), First few moments of 
P.D.F. of o;(t). 

Integral scale of appropriate 
(transverse or longitudinal) 
von Karman spectrum. 
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AIRCRAFT RESPONSE PROBABILITY DENSITY FUNCTIONS 

In Sec. 4.4 of Ref. 19, a series expansion was developed 
for the first-order probability density function of an arbi- 
trary aircraft response variable. The expansion is valid for 
situations where the three locally stationary conditions 
described above and in Ref. 19 are valid. 'In this section, 
a similar series expansion for the first-order probability 
density of an arbitrary aircraft response variable is devel- 
oped; however, in this new treatment only the first locally 
stationary condition described by Eq. (1.8) is required. This 
condition depends on turbulence properties only, and is 
believed to be virtually always satisfied. Thus, the present 
results apply to supersonic aircraft with arbitrarily high 
Mach numbers - as well as to subsonic aircraft for which the 
simpler results of Sec. 4.4 of Ref. 19 apply. 

Gaussian Property of Response Process Conditioned 

on the Intensity Modulation Process of(t)* 

In Sec. 2, we shall assume that the "slow" component 
w,(t) and the component z(t) in the turbulence model of Eq. 
(1.2) both are stationary Gaussian processes with zero mean 
values. When w,(t) and z(t) satisfy this zero mean and 
Gaussian assumption, the response process y(t), conditioned 
on the process of(t) is a zero mean strietZy Gaussian (gen- 
eralZy nonstationary) process. To prove this, we note first 
that each sample function of the response process {y(t)) can 
be expressed as 

yWlo,(u) = y,(t) + Y,wja,(u) , -aJ<uzt (2.1) 

where y,(t) is the aircraft response to the "slow" turbulence 
sample function w,(t) in Eq. (1.2), 

co y,(t) = h(T) ws(t--r) dT , (2.2) 

0 

%This section closely parallels Sec. 4.1 of Ref. 19. 
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and yf(t) Iof is the aircraft response to the "fast" tur- 
bulence sample function w,(t) in Eq. (1.2), 

O3 Y,wla,(u) = J h(T) Cw,(t-r)la,(u)l dT, -‘=uLt 
0 

J 
co = h(T) o,(t-T) z(t--c) dT . 

0 

(2.3a) 

(2.3b) 

The vertical bars followed by af(u) in Eqs. (2.1) and (2.3) 
denote that, in the stochastic process interpretation of these 
equations, the sample function of(u) is assumed to be known 
or specified for all values of u within the interval -m<u<t. 
Also, in writing Eqs. (2.2) and (2.3), we have assumed that 
h(t) is deterministic and causal - i.e., that h(t) = 0 for 
t<o. When of(u) is assumed to be known or specified for all 
--OD<u<t, the right-hand side of Eq. (2.3b) represents a (deter- 
ministic) linear transformation of the Gaussian random function 
z(t) - Thus, the conditiona random process {yf(t)lof(u)), 
where of(u) is specified for all --o3<u<t, is itself strictly 
Gaussian (and generally nonstationary) - since any linear 
transformation of a Gaussian process is itself Gaussian - 
e.g., Cramer [8], pp. 312 and 313. Furthermore, {w,(t)) is 
assumed to be Gaussian; thus, from the linearity of Eq. (2.2), 
the random process {y,(t)) also is Gaussian. Moreover, since 
{w,(t)) and {z(t)} are assumed to be independent, {y,(t)) 
and Iyf(t)laf(u)) also are independent. Finally, since the 
sum of any number of independent Gaussian processes is neces- 
sarily Gaussian - e.g., Cramer C81, p. 316 - it follows from 
Eq. (2.1) that the conditional response process {y(t)lof(u)}, 
where af(u) is specified for all -m<uzt, is strictly Gaussian 
(and generally nonstationary). This result does not depend 
on any locally stationary assumption. From the zero mean 
value assumptions for the processes {ws(t)) and {z,(t)} it 
follows further from Eqs. (2.2) and (2.3b) that {y(t)lof(u)} 
also has zero mean value. 

Let us denote the conditional mean square value of the 
process {y(t)) by 

u2 = o;(t) e E{y2(t)laf(u)I , Y 
--cu<t ; (2.4) _ 
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that is, 0; is the expected value of the squared system re- 
sponse given that af(u) is specified for all -m<u(t. The 
expectation operation therefore takes place over the ensembles 
of input functions (w,(t)) and {z(t)} with af(u> being con- 
sidered as known. 
stationary, 0; 

Since (y(t)lof(u)I is generally non- 
is generally a function of t. Furthermore, 

when we (later) consider of(t) to be a stochastic function 
of time, 0$(t) also becomes a stochastic function of time. 

Let us now consider the function of(u), -m<uit to be 
the limiting case of an infinite dimensional "vector" 
elf q Bf(U1,U2,..., un> as n is taken to approach infinity 
and uj+l - Uj is shrunk to zero for all j = 1,2,...,n-1. 
Thus, the assumption that the "vector" af is specified is 
identical to an assumption that the function of(u) is speci- 
fied for all --oo<u<t. Let p(ylaf) denote the conditional 
probability density of the aircraft response y(t) given that 
of(u) is specified for all -a<uzt. Then, from the above 
discussion, p(y gf) is strictly normally distributed with 
variance 0; = 1 o,(t) described by Eq. (2.4): 

2 
25 

P(Ykf) = y . (2.5) 

Series Expansion of Response Probability 

Density Functions 

Equation (2.5) expresses the conditional probability 
density of the aircraft response y(t) given that the random 
function af(u) is specified for all values of O<u<t. The 
unconditional probability density of the aircraft-response 
is the expectation of p(ylof) with respect to the joint 
probability density of the-vector gf; i.e., 

J 
co 

P(Y) = p(yla,) do,> daf (2.6a) 
0 

= E{p(YlGf)} ' 
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where the integral in Eq. (2.6) represents the limiting case 
of an infinite order integral over the n-dimensional space 
{u 1’U23”‘3 u 1 as n is taken to approach infinity and 
;g+& . - l-5 isnshrunk to zero for all j = 1,2,...,n-1 as 

escribed above. (It will become evident shortly that no 
such integrals will have to be carried out to apply the 
methods being presented.) 

In most turbulence records, fzuetuations in the stochastic 
function af(t) are of the order of not more than 50% of the 
mean value of of(t). Each sample function af(t) in our con- 
ceptual ensemble {af(t>} gives rise to a different function 
o$(t) as indicated by Eq. (2.4): Furthermore, fluctuations 
in a;(t) relative to the mean value of cr2 are comparable to 
or less than fluctuations in of(t) relatyve to its mean. 
Consequently, we need only consider variations in the right- 
hand side of Eq. (2.5) that are caused by f'smallff variations 
in o2 2 

Y 
relative to the mean cr Y of 05: 

7 g E{o;} . 
Y (2.7) 

Such variations in p(ylaf) may be efficiently represented by 
a Taylor's series expansion of the right-hand side of 

Eq. (2.5) in the variable 0' 2 
Y 

about its mean value 0 
Y 

- i.e., 

P(Y 

where we 

P(k)(Y bf) 
(a2 -F)k 

Y Y J 
k ! 

have used the definition 

dk 

d(a;)k 
P(YlZf) 

+3- 
Y Y 

Y2 
dk 

-- 
= 1 e 20; 

d(o;)k J2~r 0; 

(2.8 

(2.9a) 

(2.9b) 
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according to Eq. (2.5), and where 

p(“)(J71~f) = P(Ybf)( 
* 

o&7- 
Y Y 

Let us denote the central moments of a2 by Y 

,,(F) 0 E{(a2 -2- k 
OY 

y-ay) I 

(2.10) 

(2.11a) 

(2.11b) 

where, in going to the second line, we have used Eq. (2.4) 
and the vector notation for of(u). If we now substitute 
Eq. (2.8) into Eq. (2.6a), then interchange orders of inte- 
gration and summation, and compare the resulting expression 
with Eq. (2.11), we see that our series expansion of p(y) 
may be expressed as 

P(Y) = If 
k=O 

(2.12) 

where p(k)(Yjiif (k) ) is defined by Eq. (2.9) and vu2 is the kth 

central moment of CT; as defined by Eq. (2.11). y 

Equation (2.12) is the desired series expansion of p(y). 
Since p(f) = - 1, the first term in the right-hand side of 
Eq. (2.?5) is p(ylo,) 02=;T ' 

whereas the term corresponding 

y ;y : 0 to k = 1 is zero because . 
OY 

Consequently, the first 

two nonvanishing terms of the right-hand side of Eq. (2.12) 
are 
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P(Y) pI P(YlZf) 
CT2=0 2 + 2 !-Jo2 l (*) p(2)(y[z,) . 

Y Y Y 
(*.J-31 

Our motivation for taking a$ = q as the expansion point 
of our Taylor's series is threefold: in this case (i) when 
cl2 
t$e 

is a constant the first term is in exact agreement with 
known Gaussi& result, (tli the term k = 1 in Eq. (2.12) 

vanishes identically since pa2 =O, and (iii) the second 
Y 

moment of ~7~ 2. 
5 

is minimized about the expansion point u2 = CJ 
hence, the irst correction term to the term k = 0 is' Y' 
minimized. 

Discussion. From Eq. (2.5), we see that the first term 
in the right-hand side of Eq. (2.13) is the Gaussian density 

function with variance a$ = 7. Thus, in those situations 
where o2 is a constant - whit 
Eq. d3) 

?I occur when af is a constant - 
reduces to the known Gaussian result for stationary 

Gaussian aircraft excitations. In Appendix A, it is shown 
that the low-order correction terms to the Gaussian first 
term in Eq. (2.12) are 

P(YlOf) 2 
P(l)(YICf) = 2cr2 L - 1 

Y [ 1 G o&p 
Y Y 

P(YlZf) 
= H Y 202 2 

Y 
01 0 2 

Y = 0 
*Y Y d 

- 
-7 

(2.14a) 

(2.14b) 
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P(*)(Yla,) = 
P(YlZf) 

L 

y4 
4(92 ($I2 

-d+j 

G I o&p 
Y Y 

P(Y lg = 
4b92 

H, -2 
0 *Y 

3 - 
2 

*y= cT d Y 

and 

P(3)(YlEf) = 
P(Y lp 

X 

8yy 

[ 

Y6 -15 Y4 + 45 2 - 
($” 

15 
b;” 

s II - *2=(-J2 
Y Y 

P(Y Ip = H . 
8(o;j3 

0 = 
Y d-- 7 

Y 

The general form of the above three terms is 

P(Y bf) 
c2qk 

(*.15a) 

(2.1%) 

(2.16a) 

(2.16b) 

(2.17) 

where, in Eqs. (2.14) through (2.17), H2k(*) denotes the 
Hermite polynomial of degree 2k as defined on p. 133 of Ref. 8. 

It may be shown that (at least through the term k = 3) 
the series expansion of Eq. (2.12) is identical to the Gram- 
Charlier series of type A - e.g., Ref. 8, pp. 222, 223. 
However, our derivation of Eq. (2.12) is entirely different 
from the usual derivation of the Gram-Charlier series. Our 
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derivation was based on a TaycLorFs series expansion of the 
Gaussian density of Eq. (2.5) where derivates were taken with 
respect to the variance of o$ at a generic point y. Con- 
sequently, the expaizsion functions of Eq. (2.9) have the 
property that for sufficientZy smaZ2 low-order central moments 

JZ) 
"Y 

, k = 2,3,..., a smaZZ number of terms in the series of 

Eq- (2.22) shouZd provide an ex:ceZ'lent approximation to p(y) 
for every value of y in the range -~cy<~. That is, the forms 
of the expansion functions p (k) 

(Y IOf’ k = 2,3,..., (considered 
as functions of yl are the optima2 choices for a good fit over 
the entire range -a< ycm of interest of the variabZe y. A pro- 
perty of this type cannot be inferred from common derivations 
of the Gram-CharZier - e.g., Ref. 8, pp. 222, 223 - and, in 
fact, may be vaZid o&y for Zinear transformations of the eZass 
of intensity moduZated Gaussian processes being considered 
herein - ef., von Mises [32, p. 1371. 

Example of Two-Term Expansion of Response 

Probabiiity Density Functions 

In order to evaluate the terms through, say, k = N in the 

expansion of Eq. (2.8), we require o', = E{a2} and the central 
moments defined by Eq. (2.11a) through k = 8. The quantity 
EIo$) can be evaluated by integrating over --co<f<m the power 
spectral density of the aircraft response. In the next 
section of this report, a new method will be described for 

(2) evaluating the coefficient ua2 of the first and most 
important correction term in z he expansion. The accuracy of 
the two terms of the expansion described by Eq. (2.13) there- 
fore is of considerable interest. 

To ascertain typical accuracy that can be expected from 
the two-term expansion described by Eq. (2.13), we consider 
a one-dimensional analog of Eq. (2.6a), which, we recall is 
the exact expression for p(y) that Eq. (2.13) approximates. 
To relate this one-dimensional analog to the infinite dimen- 
sional integration in Eq. (2.6a), we recall that when fluctua- 
tions in the process of(t) are negligible over time intervals 
comparable with the nominal duration of the aircraft impulse 
response h(t), the response process is locally stationary 
and Gaussian [29] with instantaneous time-varying variance 

*; 
q c?(t) 2 E{y2(t)laf(t)) . (2.18) 
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Equation (2.18) differs from Eq. (2.4) in that in the quasi- 
stationary approximation involved in Eq. (2.18), at each value 
of t,a$(t> depends on the value of the function of(t) ob- 
served only at the same instant of time - rather than on 
of(u) observed over -a<ult as in Eq. (2.4). Thus, Eq. (2.6a) 
may be replaced in this quasi-stationary approximation by 

cn P(Y) = 
I 

P(Yjof) p(o,) daf 
0 

-y2 co 
= 

f 
1 e 20; 

do,> dof 
0 J279 

a.7 -22 
= I 1 e 20$ 

0 J23 
P($) da2 , Y 

(*.19a) 

(*.19b) 

(2.19c) 

where,% in going to Eq. (2.lgb) we have substituted Eq. (2.5) 
where o$ is a function of of as indicated by Eq. (2.18), and 
in going to Eq. (2.lgc) the probability density p(of) has 
been mapped into the probability density ~(a$) with the trans- 
formation between af and cr2 described by Eq. (2.18). In this 
regard, we note that Eq. (5.18) implies the existence of a 
generally different value of 0; for each different value of 
of - i.e., defines 0; as a function of crf. Therefore, the 
probability density p(af) implicitly defines from the function 
a$(af) the probability density ~(0;) shown in Eq. (2.lgc). 

When the aircraft excitation is a stationary Gaussian 
process,crf is a constant; therefore, from Eq. (2.18) 0; also 
is a constant and p(o$) is a delta function located at the 
correct value of ~3~. 
in Eq. (2.19c) wily 

For this limiting case, the integration 
yield a Gaussian proability density with 

the correct variance. 

*In Eqs. (2.19a) to (2.lgc) and the discussion following them, 
we denote the probability density functions of the random 
variables af and 0 G by p(of) and ~(a$), respectively. There- 

fore, p(of) and ~(a$) are different functions of their 
arguments. To keep the notational problem from getting out 
of control, we shall generally follow this practice in the 
following pages. That is, probability density functions of 
different random variables will be denoted by p(v) with the 
arguments being the random variables the densities describe. 
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In order to ascertain the typical accuracy that can be 
expected from the two-term expansion of Eq. (2.13), we con- 
sider for the probability density p(a2> in Eq. (2.lgc) the 
gamma density - e.g., pp. 220-221 of Wef. 33: 

PC+ = 

0 

Y-l -Y I 
2 

e 
a; oy 

3 cl; ’ 0 - 

a; < 0 . 

(2.20) 

The gamma density function generally is expressed as a function 
of two "free parameters" which are uniquely determined by the 
mean and variance of the distribution. Instead, we have 

written Eq. (2.20) directly in terms of the mean 0' of the 
distribution and one additional free parameter. TX. 1s re- 
maining free parameter is the reciprocal of the relative 
variance of ~7; - i.e., 

1 
= Relative variance of o2 ' 

Y 

(*-*la) 

(2.21b) 

Thus, when y -t 03, the density described by Eq. (2.20) 
approaches a delta function located at cr2 = 2 On the other 
hand, when y = 1, Eq. (2.20) describes thg exignential proba- 
bility density. For large finite values of y, it can be shown 
that Eq. (2.20) approaches a Gaussian density in the neighbor- 
hood of cr; = a;. 

. . . 
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In Fig. 7, the gamma probability density is shown plotted 
in the usual manner for several values of the parameter y - 
see, for example, pp. 248 and 404 of Ref. 32. However, we 
have used our notation of Eq. (2.20) in describing the abscissa 
and ordinate in Fig. 7. When plotted as a function of the 
normalized variable of a*/q that is "natural" to the gamma 
density as described by 8 q. (2.20), we obtain the behavior 
shown in Fig. 8. Notice that each density function shown in 
Fig. 8 has the same mean value, and that Fig. 8 shows the 
relative variance l/y shrinking as y increases - as we have 
described above. In the limit y + 00 p(o$) approaches a Dirac 
delta function located at CT; = 3. Figure 8 displays Eq. 
(2.20) in the form relevant to tge present work - the plots 
shown in Fig. 7 are included only for comparison with the 
gamma density as it is usually shown. From Fig. 8, we can see 
that the gamma density function of Eq. (2.20) encompasses a 
nice range of shapes to model the probability density of 0; 
for purposes of studying the accuracy of the two-term expan- 
sion of p(y) given by Eq. (2.13). Fortunately, the exact 
density function p(y) also can be evaluated in closed form 
when the gamma density of Eq. (2.20) is substituted into 
Eq. (2.lgc) and the integration carried out. 

When Eqs. (2.lgc) and (2.20) are combined, it is shown 
in Appendix B that we may express the resulting probability 
density in terms of the normalized response variable 

as 

Py(rl) =n p(y/ T) 4-- 

(2.23) 
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where Kn(*) is the modified Bessel function of the second kind 
or order n. For n = l/2, 3/2, 5/2,..., these Bessel functions 
can be expressed in closed form in terms of elementary func- 
tions. Therefore, whenever y is a positive integer, it follows 
from Eq. (2.23) that py(n) can be expressed in closed form in 
terms of elementary functions. K,(e) for n = l/2, j/2, 
5/2,..., 19/2 are developed in Appendix C along with expres- 
sions for py(n) for y = 1,2,4,8, and 9. 

Plots of the probability density p(y/ F 0;) given by 
Eq. (2.23) and evaluated from the results in Appendix C are 
shown in Figs. 9 to 12 for values of y of 1,2,4, and 8 
respectively. To compare these results with those produced 
by the two-term expansion of Eq. (2.13), we note first from 
Eqs. (2.5), (2.1x), and (2.15), that our two-term approxima- 
tion to p(y) can be expressed as 

(2.24) 

where from Eqs. (2.11a) and (2.21a), we see that the coeffi- 
cient to the correction term may be expressed in terms of y: 

LA) 
OY 11 - - 

(a;)2 7 - 
(2.25) 

Hence, when we introduce the normalized response variable of 
Ea. (2.22) our two-term series approximation of Eqs. (2.13) 
and (2.24) becomes 

P(Q) = P(Y/&l 

( 
$+-6v2+3 (2.26) 
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DENSITY FUNCTIONS, EQS. (2.23) AND (2.26) RE- 
SPECTIVELY, FOR y = 1. DEFINITION OF y IS GIVEN 
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DENSITY FUNCTIONS, EQS. (2.23) AND (2.26) RE- 
SPECTIVELY, FOR y = 8. DEFINITION OF y IS GIVEN 
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Plots of Eq. (2.26) are shown in Figs. 9 to 12 for compari- 
son with the exact result given by Eq. (2.23). Also shown in 
each figure is the Gaussian approximation to the density 
function - i.e., the first term in Eq. (2.26). Examination 
of Figs. 9 to 12 shows that the two-term approximation of 
Eq. (2.26) provides marginal results for y = 1, good results 
for y = 2, and for y = 4 and larger, the approximation is 
excellent. 

We can express gamma in terms of the relative standard 
deviation of o$ - also called the coefficient of variation 
C8, p. 3571 - I.e., from Eq. (2.21) we have 

L=~zq7T 
(2.27a) 

6 
a; 

: coefficient of variation of 0' . 
Y 

(2.27b) 

ConsequentZy, we see from Figs. 9 to 12 that when the coeffi- 
cient of variation of the instantaneous mean-square response 
ai(t) is unity, our two-term series approximation Eq. (2.24) 
provides o&y marginal! accuracy; when the coefficient variation 
is Cl/&?) = 0.707 the accuracy is good, and when the eoeffi- 
eient variation of the instantaneous mean-square respons'e is - 
(l//4) = 0.5 or less, the error involved in the two-term 
approximation Eq. (2.24) is, for practical purposes, negZigibZe. 

We remind the reader that the probability density function 
of a2/q used to generate 
disp ayed in Fig. 8. Y 

the results of Figs. 9 to 12 are 
Thus, for all but extremely strong 

variations in 0$(t), the two-term expansion, Eq. (2.24) will 
provide excellent results. To illustrate the excellent fit 
of Eq. (2.24) in the tails of the probability density of 

P(Y/ k?, f- the same curves shown in Figs. 9 to 12 are plotted 
in Figs. 13 to 16 on semi-logarithmic coordinates. 

Relationship for Expansion Coefficient of 

Correction Term to the Gaussian Density 

Let us turn now to obtaining a general relationship for 

2:) 517 
for cases where no locally stationary assumptions are 

reGuired other than that described by Eq. (1.8) - which 
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depends only on properties of the turbulence. Thus, the 
results to follow will be valid for aircraft impulse response 
functions of arbitrary long duration - and, therefore, for 
supersonic as well as subsonic aircraft. First, we shall 
obtain a general expression for the mean-square aircraft 
response. 

Genera2 expression for mean-square aircraft response. 
Equation (1.11) is the general input-response relationship 
for spectra, where Qw(f) is the two-sided power spectral 
density of the turbulence, H(f) is the aircraft complex fre- 
quency response function, 
power spectral density. 

and @y(f) is the aircraft response 
The aircraft mean-square response 

is obtained by integrating Eq. (1.11) over -m<f<a: 

E{y2} z q = Jrn Qw(f’) IH(f>l’ df’ . (2.28) 

-a 

The bar over o2 
8 

is required since E(y2} = q is the uncondi- 
tioned expecte value of Eq. (2.4). 

From the mutual statistical independence of the processes 
(w,(t)), {of(t)}, and (z(t)) in our model of Eq. (1.2), it 
follows that the processes [w,(t)) and {wf(t)} are independent. 
Therefore, the power spectrum of {w(t)} is the sum of the 
power spectra of {w,(t)) and {wf(t)} - i.e., 

Qw(f) = aw (f) + Qw (f) * 
S f 

(2.29) 

Substitution of Eq. (2.29) into Eq. (2.28) shows that the 
mean-square aircraft response is the sum of the mean-square 
responses from the slow and fast turbulence components - i.e., 

E{y2} Zq=O; +cS2 
S yf ' 

where 

cr; = J (f) IH( df , 
S S -03 

(2.30) 

(2.31) 
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and 

a2 =E 
yf {uGf(t)3y 

(2.32) 

is the conditional mean-square aircraft response 

to the fast turbulence component conditioned on the random 
function of(t) as in Eq. (2.4) - i.e., 

OCf = OGf 
(t> 4 E{y;(t)laf(u)3, --m<u<t . _ (2.33) 

General expression for second central moment of condi- 
tional instantaneous mean-square response. Since the slow 
turbulence component w,(t) is independent of of(t), it follows 
from Eq. (2.4) that the conditional mean-square response a$ 
may be expressed as 

cl2 = Is2 + cJ2 
Y YS yf ' 

(2.34) 

where 0' 
Ys 

is the unconditioned mean-square response to the 
slow component ws(t> given by Eq. (2.3l), and otf is the con- 
ditional mean-square response to the fast component defined by 
Eq. (2.33). The second central moment of a$ - defined by 
Eq. (2.11) for k = 2 - therefore can be expressed as 

# A 2 2 E{ (u;-uy) 3 (2.35a) 
aY 

= Ec[(o; +02 > - 
S yf 

(a; +D* )I23 
S yf 

= EC(02 -02 )2) , 
yf yf 

(2.35b) 

(2.35~) 

where we have introduced Eq. (2.34) in the second line and 
have used the fact that 0' 

2 

is not a random variable. We see 

from Eq. (2.35~) that pa2 depends only on the aircraft 
Y 

response to the fast turbulence component. 
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Furthermore, we see from Eq. (2.24) that the overall co- 
efficient of the correction term to the Gaussian approximation 
of the response density function is proportional to 

(2.36) 
,Y 
-YE= 

E{(a' -o* )*I 
yf yf 

7 
3 

Y 
a; +7 

S yf 

according to Eqs. (2.30) and (2.35~). Hence, pL2)/q de- 

creases as the mean-square response a; to the 9 s ow 

turbulence component is increased. Th?s behavior is in 
agreement with intuition, since the response to the slow 
component w,(t) is assumed to be Gaussian; therefore, the 
magnitude of the correction to the Gaussian response term 
decreases as the fraction of the response in the Gaussian 
component increases. 

Series expansion of conditional instantaneous mean-square 
response. A series of developments in Refs. 34, 18, and 19 
has lead to a series expansion for the conditional instantane- 
ous power spectrum of the "fast" component wf(t) = af(t> z(t) 
of our turbulence model. This expansion is given on p. 23 
of Ref. 19 as 

(f) + RN++t) 3 (2.37) 

where Q(n)(f) is defined as the nth derivative of the power 
spectra? density Q,(f) of (z(t)} - i.e., 

QZ(f) (2.38) 

- and where 

@LO)(f) : QZ(f) . 
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The coefficients an(t) in Eq. (2.37) may be expressed in terms 
of the derivatives of of(t) by 

a,(t) = 1 y 

(-i4*)n k=O 
, (2.40) 

where 

(2.41) 

are the binomial coefficients, and where we remind the reader 
that the conditioning on the random intensity of(t) indicated 
by the left-hand side of Eq. (2.37) implies that of(t) in 
Eq. (2.40) and the a,(t) are to be treated as known functions. 
From Eq. (2.40), one may show that for odd integer values of 
n, we have 

a,(t) = 0 , n = odd . (2.42) 

Expressions for the remainder term RN+l(f,t) in Eq. (2.37) are 
given by Eqs. (4.7) and (4.13) on pp. 27 and 29 of Ref. 18. 
The first two nonvanishing terms a,(t) can be expressed as 

a,(t) = a:(t) (2.43) 

and 

a,(t) = - L- 
8.rr2 

a;(t) 
d2Rnof(t) 

(2.44a) 
dt* 

1 d*JLn[oi(t)] 
= - cqt) . 

16.rr2 dt* 
(2.44b) 

Hence, we may express the first two nonvanishing terms of the 
series in Eq. (2.37) as 
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- 1 
d*Rno:(t) 

@:2)(f) +... . (2.45) 
32~~ dt* I 

According to p. 26 of Ref. 19, we can express the condi- 
tional instantaneous spectrum of the aircraft response to the 
"fast" turbulence component wf(t) as 

~yf(waf) = Jm~wf (f,kjaf) Qh(f,T) d-r , 
-co 

(2.46) 

where @h(f,t) iS the inStantaneOUS power spectrum [34] Of the 
aircraft unit-impulse response of interest: 

J 
co Qh(fJ) = h(t-5) h(t+$) e-i2'rrf'c dT . (2.47) -cc 

Substitution of Eq. (2.46) into Eq. (2.37) gives - ignoring 
the remainder term - 

ayf(f,tlof) = i $- Jman(t-T) @i")(f) Qh(fpT) d-r. (2.48) 
n=O -03 

To obtain an expression for the conditional instantaneous 
mean-square response to the fast component wf(t) as in 
Eq. (2.33), we integrate ayf(f,tlcf) over all f: 

cl;, 2 aGp (t> i E{y;(t)lof(u)) , --CO<u<t - 

or 
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2 

aYf - = oar = i -& J=’ 
n=O ' 

a,(t--c) J m,(n) z (f’) @h(f,-c)df dT 
-co -03 

N 1 O3 = 1 -J n! n=O -oo 
a,(t--c) yh z n(~) dT , 

3 2 
(2.49) 

where, in going to the third line, we have used Eq. (2.48) and 
have interchanged the order of integration, and in going to 
the last line, we have used the definition 

(2.50) 

which is a function of the nth derivative of the power spectral 
density 0z(f) of the turbulence component (z(t)} and the in- 
stantaneous spectral density @h(f,t) of the aircraft unit- 
impulse response function h(t). The result of Eq. (2.49) 
ignores the contribution of the remainder term RN+l(f,t) in 
Eq. (2.37). Equation (2.49) is the desired series expansion 
for the conditional instantaneous mean-square aircraft response 
to the "fast" turbulence component wf(t) = of(t) z(t). 

Series expansion of second moment of conditional instan- 
taneous mean-square response. An expression for the coeffi- 
cient p(.$) u / 

-S-2 (cry) of the correction term for the Gaussian 
probabilyty density in Eq. (2.24) is given by Eq. (2.36), 
where we see that the second central moment of aGO is required. 
We may obtain a series expansion for the second mhment of CI* 
by taking the expected value of the square of Eq. (2.49): 

yf 

E{(DGf)21= 
F F tn ! J”‘JmEIan 

n,=O n,=O nl 2 -co-co 
(t'--rl)an (t'-T2)I 

1 2 
. 

(2.51) 
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where the expectation is taken with respect to fluctuations 
in the random function of(t), and where t has been replaced by 
t'. We are primarily interested in situations where the 
random process {af(t)} is stationary. In these cases, we may 
take t = tr - TV; hence, 

E{a, (t'--r,> an (t'-T,)} = E 
1 2 

{an (t> an (t+-c,--r,)l 
1 2 

2.52) 

which is independent of t. 

Introduction of ZocaZly stationary assumption. Our main 
interest in these developments is situations where the locally 
stationary assumption of Eq. (1.8) is valid. From Eqs. (1.8a) 
and (2.43) through (2.45), we see that the locally stationary 
assumption permits us to include only the term n = 0 in 
Eq. (2.49) L i.e., 

oGf(t) = E{y;(t)Iof(u)) --co<u<t - 

J 
co = a;+-c) yh zh) d-r , 2 

where we have used Eq. (2.43) and the notation 

O3 Yh ,b) - yh z O(t) = 9 9 3 J -03 > @,cf&) df’ 

(2.53) 

2.54 

which follows from Eq. (2.50). 
[with respect to fluctuations 

The expected value of aif 
in o,(t)] is 

uGf , = E{"Gf(t)l 

J 
03 = q y,,,(d d-c ; 

-03 
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hence, substituting the mean value of O$ f(tL we have from 
Eqs. (2.53) and the above relationship, 

uGf(t) - a; (2.55) 
f 

= J?+(t-=) - + yh z('d dT . , 
-a3 

According to Eqs. (2.24) and (2.35~) we require the 
(2) second central moment ~~2 which is given by the mean-square 

value of Eq. (2.55). Hozever, the right-hand side of Eq. 
(2.55) is the convolution of [o?(t) - of1 and yh,z(t) - i.e., 
Eq. (2.55) may be thought of as describing the response of a 
linear two-terminal time-invariant system with unit-impulse 
response yh ,(t) to the stochastic input [0$(t) - ?I. Thus, 
we may exprkss the power spectral density 0-2 (f) of the pro- 

cess {uGf(t) - u$ 
"yf 

' 
1 as the product of the power spectral den- 

sith Oa;(f) of (o,(t) - G> and Iyh ,(f)12, where 
9 

yh .(v) k Jmyh ,(t) ei2'rrvt dt 
2 2 

--co 

(2.56) 

is the (inverse) Fourier transform of the "system impulse 
response" Yh,z(t): 

(2.57) 

The mean-square value of {a2 Yp 
- c} whic2y, according to 

Eq. (2.35~) is the second central moment ~~2 is obtained by 

integrating Eq. (2.57) over all f: 
Y 

(2.58) 
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Equations (2.28) and (2.58) are the required reZation- 

ships for evaZuation of the coefficient ~:($)/(q)~ of the 
u 

the correction term that occurs in Eq. (2.54) to the Gaussian 
probability density function of the aircraft response y(t). 
The turbuZenee characterizations required for evaluation of 

7 
Y 

and u'f' 
aY 

are the power spectra2 density Ow(f) of the tur- 

buZenee veZoeity (w(t)} and the power spectral density @ 2(f) 

of Cop) - q. where of(t) is the intensity modulation 9 
in the fast component wfit) given by Eq. (1.3). Methods for 
computing Q 2(f) from turbuZenee recordings are described on 

Of 
PP. 79-83 of Ref. 19. The quantity yh ,(f) is defined by 

Eqs. (2.54) and (2.56). 1Votiee that yi z~f) depends both on 

the power spectral density Qz(f) of the'turbuzenee component 
{z(t)) and on the aircraft unit-impulse response function as 
may be seen from Eq. (2.47). Thus, Th z(f) or yh Z(t) ehar- 
aeterizes the aircraft impuZse responsi with respiet to the 
turbuZenee component (z(t)). The ZoeaZZy stationary assump- 
tion of Eq. (1.8) has been used in deriving Eq. (2.58). 

AZternative form for system characterization. Generaliz- 
ing the definition of Eq. (2.56) to include yh z ,(t) - which 
is defined by Eq. (2.50) - we have 9 3 

+h,z,n(v) ' Imyh,z,n(t) ei2nvt dt 
--co co co = ’ I; @in)(f) Qh(f,t) df ei2-rrvt dt 
--8 -co 1 

= 
J 

o?@(n) z cf) -co [I mQ (f t) ei2*vt dt h 3 -03 I df . (2.59) 

However, using Eq. (35b) on p. 29 of Ref. 34: 
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J 
co 

Sh(f,V) h Qh(f,t) ei2'rrvt dt 
-03 

= H(f+ H*(f+$) , (2.60) 

where H(f) is the complex frequency response defined by 
Eq. (1.9>, we have from Eqs. (2.59) and (2.60) 

7 h z ,(v) = i”man) (f) H(f-5) H*(f+;) df. (2.61) 
9 , 

-co 

The special case of Eq. (2.61) for use in Eq. (2.58) is 

Th zW = Jm Qz(f) H(f-$) H*(f+$) df , (2.62) 
2 

-m 
which is the desired alternative form of P, ,(w) for use in 
Eq. (2.58). Equation (2.62) may be interpr:ted with the aid 
of the material contained in Sec. 4 of Ref. 34. 

Limiting Cases of Expansion Coefficients of the 

NonGaussian Term 

Limiting cases of the central result, Eq. (2.58), provide 
insight into that result. Three limiting cases are discussed 
below. 

Case 1: 
(z(t)) 

wf(t) is stationary and Gaussian. Since the 
process in our model of Eq. (1.3) is stationary and 
Gaussian, the "fast" turbulence component (wf(t)) is stationary 
and Gaussian when 

u,(t) = constant = af . (2.63) 

In this case, the power spectrum Cp 2(f) of the random process 
Cot(t) - i$> is Therefore, Of zero. according to Eq. (2.58), 
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lw 
aY 

is zero, and according to Eq. (2.24), the probability 

density of the aircraft response y(t) is Gaussian. 

Case 2: power spectrum of (z(t)) is white. This case 
is of little direct interest for the representation of tur- 
bulence since {z(t)) would normally be taken to have the 
appropriate (transverse or longitudinal) von Karman spectral 
form. Nevertheless, it is of general interest as a limiting 
case in the study of Eq. (2.58). For this case, we have 

Qz(f) = constant = Q,(e) . (2.64) 

Using Eq. (2.64), we have from Eq. (2.54): 

yh ,(t) = @Z(‘) 3 J m@h(f,t) df -03 
= @Z(*) h2(t> , (2.65) 

where, in going to the second line, we have used Eq. (12a) on 
26 of Ref. 34 applied to the aircraft unit-impulse response 

E;t,. Therefore, according to Eq. (2.56), we have for the 
present case 

J 
00 ;h,z(v) = Qz(*) h2(t> ei2'rrvt dt , (2.66) 

-co 

which is the (inverse) Fourier transform of h2(t> multiplied 
by the constant spectral density Oz(*). 

Equation (2.66) may be used directly in Eq. (2.58) to 
evaluate u(Z) 

OY l 

Alternatively, we may define the "autocorrela- 

tion function" of the square of the (deterministic) unit- 
impulse response h(t) as 

A co 
4 2(T) = h J h2(t> h2(t+T> dt , 

-co 

(2.67) 

which is necessarily an even function of -r. Using Weiner's 
theorem - e.g., Eq. (135) on p. 54 of Ref. 34 - we then have 
from Eqs. (2.66) and (2.67), 
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J 

co 

I ?h z(v)12 = a;(*) 2 Gh2(-r) ei2"' dT , (2.68) 

which may be used to evaluate 1-1 (2) 

G 
by Eq. (2.58). Notice that 

h2(t) is a nonnegative function. 
well behaved h(t), 

Therefore, for reasonably 
the main contribution to yh ,(v> will be 

-in the region about the origin v = 0, and the Nominal bandwidth 
Of/& ,iv> I2 will be of the order of the reciprocal of the 
nominal duration of h(t). Therefore, this same low-frequency 
region of the spectrum @ 2,(v) is relevant in the computation 

of u(z) by Eq (2 58) " . 
OY 

. . 

Case 3: fluctuations in u 
e 

C-t) 
duration of h(t). 

are negZigibZe over the 
When fluctua ions in the intensity modula- 

tion of(t) occur sufficiently slowly, the power spectral 
density of (u:(t) - 2 
zero frequency. 

uf} has all of its area concentrated near 
The limiting case in this situation is 

@ 2(v) = E{(u;-+~~ 6(v) , 
Of 

(2.69) 

where 6(v) is the Dirac delta function located at v = 0. Sub- 
stitution of Eq. (2.69) into Eq. (2.58) yields 

JJ($)= E{(cI*-~~)~} 
uY 

f f J 
O" S(v)lp h,z(v)12 dv 

-co 

= E{(u$-~)~) ~~,,,(a)~2 * 

However, from Eq. (2.62) it follows directly that 

yh z(o) = 3 J m G,(f) IH( df , 
-02 

(2.70) 

(2.71) 
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which is real; hence, Eqs. (2.70) and (2.71) yield 

u(s)= E{(u ?- 2 
uY 

f-uf) 1 @ (f) IH(f)j2df2 
Z I 2 (2.72) 

which is the desired result. 

From Eq. (2.71), we recognize yh .(O) as the mean-square 
response of the aircraft to the turbutenee component Cz(t)). 
When Eq. (2.72) is combined with Eq. (2.24), we see that the 
resulting expression for the probability density function of 
the aircraft response is identiea2 with that given by Eqs. 
(4.50) and (4.51) on p. 48 of Ref. 19. These results were 
derived under the assumptions that (i) fluctuations in uf(t) 
occur slowly in comparison with those of z(t), and (ii) varia- 
tions in of(t) are negligible over durations comparabZe with 
the aircraft impuZse response duration. The more genera2 
result of Eq. (2.58) relaxes, eompZeteZy, the requirements for 
assumption (ii). However, assumption (i) - which is described 
bY Eq. (1.8) of this report - has been used in obtaining 
Eq- (2.58). We again emphasize that the assumption of Eq. 
(1.8) depends on turbuZenee properties aZone and is believed 
to be generaZZy satisfied by atmospheric turbulence. 

Series Representation of Expansion Coefficient 

of the NonGaussian Term 

The limiting case of Eqs. (2.70) - (2.72) suggests a 
(2) series expansion for vu2 that may be useful in situations 

Y 
where assumption (ii) above is almost or only marginally 
satisfied. Equation (2.70) depends on the frequency content 
oflyh ,(v)12 only at v = 0. This fact suggests a series 
repregentation of v(z) 

uY 
obtained by first expanding Iyh ,(v)12 

3 
in a Maclaurin series and then integrating term by term. 

The Maclaurin expansion of Iyh .(v)j2 may be expressed as 
3 

l?h,z(v) 1 2 = j, it $i [l,,z(v)l'I v=o. (2.73) 
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By Leibniz's rule for the nth derivative of a product (p. 111 
of Ref. 351, we have 

dn I~,,,(v)l 2 = dn [$Z(v)yh,z(V)] 
dvn dvn 

n n dn-kTh zh) 
= 

c 0 

dkT; z(v) 
L 

3 
k=O k 

. 
dv dvn-k 

However, from Eq. (2.62), we have 

dky 
hyz(v) 
dvk 

m@ (f) ak k H(f - ;)H"(f + v) 2 
df 

av v=o 

I 
co 

= (i2n)k QZ(f)mhk)(f)df, 

(2.74) 

(2.75) 

where we have used Eq. (79) on p. 269 of Ref. 36 as applied 
to the deterministic (complex) function H(f), and where 
mhk)(f) is the kth power-moment spectrum of the aircraft unit- 
impulse response function h(t). Properties of power-moments 
spectra are discussed on pp. 264-269 and 281-288 of Ref. 36. 
Their name arises from the fact that their integrals over 
-m<f<m satisfy 

f 
co mhk)(f 

-a, f 
co 

)df = tkh2(t 
-co 

)dt, k=0,1,2,..., (2.76) 

where the right-hand side of Eq. (2.76) may be interpreted as 
the kth time-moment of the instantaneous "power" h2(t> of 

h(t). Furthermore, (k) the power-moments spectra mh (f) are real 
and even functions of the frequency variable f. From Eq. 
(2.75), we also have 
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dkT; .(v) co 

'k = (-i27r)k 
dv v=o f 

QZ(f)mLk)(f)df . 
-03 

Let us define 

+) 4 h,z m. (f)m(k) 
Z 

h (f)df . 
-co 

Then combining Eqs. (2.7W (2.761, (2.77 
follows that 

(2.77) 

(2.78) 

L and (2.78), it 

= (i2n) n (2.79) 
v=o 

Hence, from Eqs. (2.581, (2.731, and (2.79), we have 

(2) = 
s2 nFo -& fin (i2nv)"Q0;(v)dv 

Y = -co 

x ,i, (-l)k (;) rk;; rAn;k) . 
3 (2.80) 

However, the autocorrelation function @a2(t) of the random 

process log(t) - -T 
f 

0 
f 

} is the inverse Fourier transform of the 
power spectrum (Pa2 v) - i.e., 

f 

Ga2(t) = 
f f 

O" @02(v)ei2nvt dv . 
f -03 

(2.81) 

Differentiating both sides of Eq. (2.81) n times with respect 
to t yields 
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f 

03 
= (i2rv)n 4, 

G 
(v>e i27rvtdv; 

-03 

Let us define 

(i27rv)n @ 
G 

(v )dv . 

(2.82) 

(2.83) 

(2.84) 

Combining Eqs. (2.80), (2.83), and (2.84) we have, finally, 

(2.85) 

(2) which is the desired series expansion of po2 . 
Y 

The power-moments spectra are defined on p. 260 of Ref. 
36 as 

tkQh(f,t)dt, k=0,1,2,... . (2.86) 
-m 

Hence, by forming the kth moment of Yh,s(t) and using Eq. 

(2.541, we see that f (k) 
h,z 

and yh ,(t) are related by 
9 

DJk co ' 'h z , (t)dt = Qz(f) -k (k) 1 t Qh(f,t)dtdf = Th z , 
J , 

-03 -00 -03 

(2.87) 
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where Eqs. (2.86) and (2.78) have been used in the second 
equality. According to Eq. (2.87), rLkL is the kth moment 
with respect to time of yh Z(t). 3 

Discussion. The term: in Eq. (2.85) for odd values of n 
are identically zero. To show this, we show that sh h-4 = o 

,z 
for n = odd. Consider Eq. (2.84) and let k' = n-k; hence, 
k = n-k'. Therefore, 

0 
n = n! n! = 
k (2.88) 

(n-k)!k! (k')!(n-k')! 
=;, . 

i ) 

Consequently, we may express the summation in Eq. (2.84) as 

= (-l)n 

Comparison of Eqs. (2.84) and (2.89) shows that 

)=E mqt bcp1 . (2.92) 

(2.89) 

'h,z 
(n) = (-l)n sin; , 

3 (2.90) 

from which it follows that 

(n> = o 
'h,z 9 n=l,j,?,... . (2.91) 

Therefore, the odd numbered terms in the summation of Eq. 
(2.85) are identically zero. 

It is instructive to consider the first two nonvanishing 
terms of Eq. (2.85). For n = 0, it follows directly from the 
definition of the autocorrelation function that 
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Furthermore, one may show [e.g., p. 21 of Ref. 373 that 

(2.93) 

which is the negative of the mean-square velocity of o%(t). 
In addition, we have from Eq. (2.84), 

I 

2 = Qz(f) IH(f) 1 ‘df , 

;;cording to Eq. (2.87) above and Eq. (12a) on p. 26 
. Furthermore, from Eq. (2.84) we also have 

C2) = r(O) ,C2) 
'h,z h,z h,z - 

(2.94a) 

(2.94b) 

of Ref. 

. (2.95) 

According to Eqs. (2.91), (2.94a), and (2.95), the first non- 
zero terms of Eq. (2.85) therefore can be expressed as 

From Eqs. (2.92) and (2.94), we see that the first term in 
Eq. (2.96) is identical to the limiting case of 1-1 (2) 

UC 
given 
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by Eq. (2.721, which applies to situations where variations 
in cff(t)-are negligible over durations comparable with the 
aircraft impulse response duration. 

We consider, now, the second term in the right-hand 
side of Eq. (2.96). Using Eq. (2.87), we see that 

I 

03 
(t-t)2yh,Z(t)dt 

-co = 

f 
m yh ,(t)dt 

3 
-co 

where 
co 

tyh z , (t>dt 

I 

00 

Yh,z(t)dt 

-co 

(2.97) 

(2.98) 

is the time-centroid of Yh,z(t). The equivalence of the two 
right-hand sides of Eq. (2.97) is easily proved by expanding 
(t-t>2 in the second line and using Eq. (2.98). Thus, Eq. 
(2.97) represents the second central moment of the normalized 
"mass density" Yh,z(t) which iS analogous to the standard 
deviation of the "density function" Yh,z(t)' 

It is shown on pp. 100-101 of Ref. 19 [Eq. (~.18) in 
particular] that the quantity [-Go2 (o+o)/@(2) (O)l~ is about 

f G 
one-third of the nominal correlation interval of the process 

{o:(t) - q1. Consequently, we have 
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"nominal duration" of yh .(t) 
> . (2.99) 

"correlation interval" of Cog(t) - OF] 

where, here, the sign Z should be read as "is of the order of," 
and where we have considered the "nominal duration" of Yh,z(t) 
to be about three times the duration of Yh,z(t) as measured by 
the square-root of its second central moment. Consequently, 
when the correlation interval of the random process 
{o:(f) - q} is large in comparison with the nominal duration 

of yh,z(t), the second term in the right-hand note of Eq. 
(2.96) is negligible and the approximation to u (2) 2 

Eq. (2.72) is adequate. Moreover, OY 
given by 

we see from Eqs. (2.721, 
(2.96), and (2.991, that the approximation Eq. (2.72) wiZ2 
tend to overestimate the positive quantity u(:'. 

"Y 
Finally, to obtain a physical understanding of the dura- 

tion of Yh,z(t) we consider the case where the power spectrum 
of the process (z(t)) is white - i.e., Q,(f) = Q,(e) = 
constant. In this case, we see from Eq. (2.65) that 

yh .(t) = @,(*)h2(t); 
9 

(2.100) 

hence, when Qz(f) is a constant over the "passband" of h(t), 
the above statements pertaining to the duration of Yh z(t) 
can be interpreted as pertaining to the duration of h'(t). 

In cases where the mean-square velocity of the process 
( > {at(t)) does not exist, lQO! (O)l d oes not exist as may be 

seen from Eq. (2.93), and the series expansion Eq. (2.85) and 
the two-term approximation Eq. (2.96) are of little use. An 
alternative series expansion of p (2) 2 

*Y 
is derived in Appendix D. 

This alternative expansion has the advantage that the first 
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correction term to the limiting case of u (2) 

G 
given by Eq. 

(2.72) does not require the existence of the mean-square 
velocity of the process {a%(t)}. The alternative expansion 
derived in Appendix D also is more amenable to calculations 
based on numerical estimation of the power spectrum and auto- 
correlation function of {o%(t)) than the expansion, Eq. (2.85). 

In this section, we have provided a detailed methodology 
for estimating the aircraft response probability density 
function from appropriate characterizations of the turbulence 
excitation. Comparable techniques are developed in Sec. 6 
for threshold mean exceedance rates of the aircraft response. 
For cases where fluctuations in Of(t) in our turbulence model 
of Eqs. (1.2) and (1.3) are negligible over durations compar- 
able with the duration of the aircraft impulse response h(t), 
expressions for mean exceedance rates provided on pp. 36 to 
46 of Ref. 19 are applicable. 

72 



MAXIMUM LIKELIHOOD ESTIMATION OF THE INTEGRAL SCALE AND 

INTENSITY OF von KARMAN TURBULENCE 

Here, we shall derive an optimum method for estimation 
of the integral scale and intensity of a well-behaved turbu- 
lence record with no appreciable low-frequency component 
ws(t> present. The vertical time history shown in Fig. 17 
illustrates such a record. To develop the method, we shall 
assume that the functional form of the power spectrum of 
the record is known - e.g., the transverse or longitudinal 
von Karman spectral forms. The problem, then, is to develop 
an optimal method for estimating the parameters that deter- 
mine the spectrum. In the case of the above two von Karman 
forms, two parameters - the integral scale L and intensity 
o - completely determine the spectrum. Several ad hoc 
methods for estimating values of the integral scale are 
described on pp. 356 to 360 of Ref. 22. 

The method derived below is based on the intuitively 
appealing procedure called the method of maximum likelihood - 
e.g., Ref. 38 - which was orginally introduced by Gauss. 
This method is usually treated in the context of optimal 
estimation of the parameters - e.g., mean and variance - of 
a probability density of known functional form from a random 
sample "drawn" from the density. As we show below, it also 
may be used to estimate the parameters L and 0 of a turbu- 
lence record whose power spectrum is of known functional 
form. 

Maximum Likelihood Estimation of the Parameter 

in a Probability Density Function 

Let us first briefly review the method in its usual 
context. Let ~(~10) be the probability density of a random 
variable x, where 8 is a parameter in the density function, 
such as the mean value. Let X1,X,,.. .,X be n samples drawn 
from the population whose probability degsity is governed 
by ~(~10). The likelihood function is defined as 

m,,x,,.. ‘,xnle) = ~ P(‘jle) , 
j=l 

(3.1) 
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which is a function of the n sample values X1,X2,...,Xn and 
13, where the functional form p(xle), considered as a function 
of x and 8, is assumed known. The problem is to determine 
the "best estimate" of the unknown parameter 8 from the n 
sample values Xi,X,,.*.,Xn. When 8 is assumed known, the 
right-hand side of Eq. (3.1) is the joint probability density 
of the sample X1,Xz,...,Xn. The method of maximum likelihood 
assumes that when 8 is unknown, the "most likely" value of 8 
is the value that maximizes the probability of the observed 
sample. That is, when X1,X2,... ,Xn are substituted into the 
right-hand side of Eq. (3. l), the "most likely" value of 8 
is the value that yields a maximum value of L(X1,X2,...,Xn16). 
Generally, it is most convenient to maximize log 
mb,x2,... ,X,/e) rather than L itself. Thus, the "most 
likely" value of 8 is obtained by solving the equation 

aL(x,,x2,...,xnle) 
= 

ae 0 . (3.2) 

When more than one solution to Eq. (3.2) exists, the solution 
chosen is the one that maximizes L when substituted back 
into L(X ,X ,...,X, ). Equation (3.2) is referred to as a 
likelihood equation. For Eq. (3.2) to yield a maximum, it 
is necessary that (a2L/ae2)<0 at the value of 8 determined 
by Eq. (3.2). 

Joint Probability Density of Unsmoothed Turbulence Spectra 

Let us turn now to the problem of estimating the in- 
tegral scale and intensity from a recorded turbulence time 
history such as the vertical record shown in Fig. 17 which 
exhibits no discernible slow component w (t). To begin 
with, we shall assume that the record isSa time history 
of finite duration drawn from a stationary Gaussian process; 
later, we shall argue that the final result is not parti- 
cularly sensitive to the stationary assumption. Furthermore, 
we shall assume that the duration T of the record is suf- 
ficiently large so that no appreciable bias distortion of 
its spectrum is caused by operating only with a finite seg- 
ment of T sets duration. That is, we shall assume that for 
appropriate (unknown) choices of integral scale and intensity, 
the expected vaZue of the power spectrum of our finite seg- 
ment of duration T is equal to the actual power spectrum of 
a record of infinite duration. 
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FIG. 17. LOW-ALTITUDE TURBULENCE RECORDS UNDER CONVECTIVE 
CONDITIONS. [AIRCRAFT SPEED 229 m/set (422 ft/sec).] 
(Ref. 23, Fig. 4, p. 282.) 
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The problem, then,is to estimate L and o* from a segment 
T sets long drawn from a stationary Gaussian process. The 
power spectral density of the process is of known functional 
form, and is determined by the two parameters L and CJ*. 
Our interest, of course, is to determine the values of L and 
o2 for the underlying process from which our finite sample 
has been drawn. Thus, we must consider the statistical 
properties of a conceptual ensemble of stationary Gaussian 
segments T sets long that are drawn from the underlying 
process. 

From each such segment, we first generate, conceptually, 
a periodic function by repeating our T see segment end-on-end. 
That is, if we denote a typical Gaussian segment by w(t), 
- z<t<r 2- 2' then from each such segment we generate a periodic 
function satisfying 

w(t+pT) = w(t) , p=O,?1,?2 ,--- * (3.3) 

Since each such function in our new ensemble is periodic with 
period T, we may consider the statistics of its complex 
Fourier series coefficients c,, n=O,+l,f2,... which- 
complex amplitudes of the Fourier series components 
at frequencies of f=+n/T, n=0,1,2,... - i.e., 

w(t) = y 'n ei2nnt'T n=-co 3 

where 

1 T/2 
c = -i2nnt/T dt 

n i=5 1 I 
w(t) e 

-T/2 

=a n -ibn , 

are the 
occurring 

(3.4) 

(3.5a) 

(3.5b) 

where a, and b, are real. First, we note that since the 
original process w(t) is Gaussian, the complex Fourier co- 
efficients c, must be jointly Gaussian complex variables 
since the operation on w(t) described by Eq. (3.5a) is a 
1inea.r transformation. In particular, for a given value of 
n, the probability density of the real and imaginary parts 
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a, and b, of the complex coefficients Cn must be governed by 
a joint normal probability density on the phase plane. 
Furthermore, since the original process w(t) is stationary, 
there can be no preference between the cosine and sine com- 
ponents a, and b,; that is, for every harmonic n, the sta- 
tionary property of w(t) requires that the joint probability 
density of the cosine and sine coefficients on the phase 
plane be rotationallv invariant. It follows that an and b, 
must be uncorrelated and that each is governed by a normal 
probability density with the same mean value of zero and 
variance of, say, 0:/2. For a discussion of the bivariate 
normal density, see, for example, pp. 147 and 148 of Daven- 
port and Root C391. 

Consider, now, the Fourier transform of a typical tur- 
bulence segment - which we now defined to be zero outside 
the interval (-T/2)(t<(T/2). From the sampling theorem in 
the frequency domain - e.g., p. 33 of Woodward [40] - we 
see that at the values of f, = +n/T described above, the 
Fourier transform of our turbulence segment is T times the 
values of the complex Fourier series coefficients c,. This 
fact also is immediately evident from Eq. (3.5a). Further- 
more, we see from the same sampling theorem that the Fourier 
transform of our truncated segment is completely determined 
by the complex coefficients c,, n=0,+1,+2,... . 

Consider, now, the statistical properties of an estimate 
of the power spectral density of the turbulence process, where 
the estimate is the so-called periodogram defined as 

(3.6) 

- e.g., p. 107 of Davenport and Root [39]. At frequencies 
fn = n/T, S(f) is related to the Fourier series coefficients 
of Eq. (3.5) by 

S(fn) E Sn = + Tc 
I I 

2 n = Tlcnl* 

= T[ai+bil , n=1,2,... . (3.7) 

77 



According to the above comments, an and b, are independent, 
and each is governed by a normal probability density with 
zero mean and variance &/2. Hence, the random variable 

In 4 aA + bi (3.8) 

is governed by the exponential probability density function 

I 

Le 
-In/P; 

Pit 
9 I,‘0 

PU,) = 

0 3 I,<0 2 (3.9) 

as is shown, for example, on p. 53 of Lawson and Uhlenbeck 
hJ1, who, incidentally, incorrectly refer to the density 
of' Eq. (3.9) as a Rayleigh density. It follows from Eqs. 
(3.7) to (3.9) that values of Sn also are governed by an 
exponential density function, say, 

(3.10) 

where X, = l/(Tp;). Finally, we note that the random vari- 
ables S,, n = 0,1,2,... are mutually independent since the 
real and imaginary parts of the complex Fourier series co- 
efficients Cn, from which the Sn are generated, are uncor- 
related Gaussian variates. A proof of the fact that all 
pairs of random variables a,, a,, n#m; bn, b,, nfm; and a,, 
b my all n,m, are uncorrelated for n, m20 is provided in 
Appendix E. Also see p. 119 of Goldman [#z]. 

Our original time segment w(t), (-T/2)Lt<(T/2) from 
which S(f) is generated by Eq. (3.6) can be reconstructed 
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from its complex Fourier series coefficients Cn = a,-ib,, 
n = 0,1,2,... . However, we have shown above that for all 
m, r-00, all nonidentical pairs of an and b, are statistically 
independent. Furthermore, the random variables an and b, 
both are governed by a normal probability density with zero 
mean and the same variance (PA/~) = (1/2hnT), which is 
uniquely determined by A,, n = 0,1,2,... and T. Consequently, 
all statistical information about a segment of w(t), 

' (-T/2)<t<(T/2), is contained in the sequence of coefficients 
x n = 0,1,2 It follows that the sequence of pro- 
bz;iZity dens:tkes'p(Sn), n = 0,1,2..., given by Eq. (3.10) 
must contain a21 possibZe statistica information about the 
periodogram S(f) defined by Eq. (3.6) since it provides a 
complete statistica description of the random process w(t), 
(-T/2)(tc(T/2), from which S(f) is generated. 

Since all S, are independent for n>O, the joint pro- 
bability density function of the "vector random variable" 
{S,,S2j...,Snl is 

P(S,,S,,..., sN 

N -x.s. jfl Xje JJ, 
'jL"3 

j=1,2,...,N 

> = 

0 2 SjiO, j=1,2,...,N 

(3.11) 

where we have used Eq. (3.10), and where N can, in principle, 
be infinity. Finally, we note that A. is the reciprocal of 
the expected value of Sj - as is easl y 4 shown in Eq. (3.10): 

A 1 
j = E{Sj} ' 

j=1,2,...,N . (3.12) 

Equation (3.11) is the joint probability density func- 
tion of samples Sj of the periodogram defined by Eq. (3.6) 
at frequency values of 

f. = j/T , j=1,2,...,N , 
J (3.13) 



where the periodogram samples taken at the frequencies de- 
fined by Eq. (3.13) contain all of the information in the 
periodogram. Equation (3.13) relates the 1. in Eq. (3.11) 
to the expected values of the unsmoothed poker spectral 
density samples Sj = S(fj). 

Likelihood Equations for a General Class 

of Turbulence Spectra 

We may rewrite Eq. (3.11) as 

p(S,,S2,...,SN) = Xlh2...An e 
-(XlSl+X2S2+...+hNSN) 

3 

(3.14) 

where, for convenience, we have left out the statement that 
the right-hand side is valid only for S.>O, j = 1,2,...,N. 
The logarithm to the base e of Eq. (3.147 is 

[Rn(X,A,... A,)] - [A,s,+~,S,+...+~NSNI 

-- 
=- 

I 
1 [fin(SlS2...SN)] + I 

Sl 
- + 2 s 2 +.. .+ 

sN 
- s1 11 3 

sN 
(3.15) 

where, in going to the last line, we have used Eq. (3.12) 
and the notation 

s 
j 

: E{Sj) , j=1,2,...,N . (3.16) 

Let us now introduce a class of power spectrum func- 
tional forms 

E{Sj} : 3. 
J 

= o*L Fj(L) , j=1,2,...,N , (3.17) 
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where CT is the rms value of the turbulence, L is the integral 
scale, and for a given frequency index j, F (L) is a function 
of L but is independent of CT'. Equation (3. J 7) includes the 
(two-sided) von Karman transverse and longitudinal spectra - 
e.g., PP. 83 and 93 of Ref. 18 - 

@KT(k) 1+188.75 = a*L - L*k* 
[1+70.78L2k2]11'6 

QKL(k) = a2L 2 
[1+70.78L2k215'6 ' 

(3.18) 

(3.19) 

where we have used wavenumber k instead of frequency f as is 
conventional in turbulence work. According to Eqs. (3.17) 
to (3.191, for the von Karman transverse spectrum, we have 

Fj(L) = 
1+188.75 L*k; 

[l+70.78L2k;111'6 ' 
(3.20) 

and for the von Karman ZongitudinaZ spectrum, we have 

Fj(L) = 2 
[l+70.78L2k;]+ * 

(3.21) 

In fact, it is easy to show that all spectral forms depending 
on a single integral scale parameter L must take the form 
of Eq. (3.17). 

When Eq. (3.17) is substituted into Eq. (3.15), we have 

~n[p(S13S29...~SN)l = 
- J?n[(02L)N F,(L) F2(L)...FN(L)] 1 

s2 + sN 

F,(L) ‘* 
.+ ~ 

FN(L) -11 , 
or 
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~n[p(sl~s2,**~,SN)l = 
- 1 NRn(cr2L) + Rn F,(L) + Rn F,(L) +...+ Rn FN(L) 

1 

[ 

s1 S 
+- + 2 + 

F,(L) *- 
.+ sN 

II 

. (3.22) 
o*L F,(L) FN(L) 

Equation (3.22) is to be maximized with respect to CT and L. 
However, from the functional form of the right-hand side 
of Eq. (3.22) we see that it is more convenient to treat the 
right-hand side of Eq. (3.22) as a function of the two para- 
meters (a*L) and L instead of o and L. For a given observa- 
tion (i.e., sample) of our periodogram (s1,s2,...,sN), the 
values of (02L) and L that maximize the right-hand side of 
Eq. (3.22) also are the values of o and L that maximize it - 
see, for example, p. 257 of Freeman [43]. Let us therefore 
differentiate Eq. (3.22) with respect to (a*L> and L and 
set the resulting expressions equal to zero: 

aJhCp(Sl,S2,...,SN; o*L,L>l 
= 

a (A) 

s2 sN - -- I N + + 
C12L F,(L) '- 

.+ l\ 
FN(L)J 1 

1 PJ 
= c 

(cJ*L)~ j=l 
(3.23) 

and 
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afinCp(S,,S2,...,SN; ~*L,L)l 
= 

aL 

-I 

1 dF, (L) 
+ 1 

dF, (L) 
+ 1 dFN(L) 

*. 
.+ 

F,(L) dL F,(L) dL FN(L) dL 

1 I 
Sl dF, (L) s2 dF, CL) 

_- ~ +- + + sN dFN(L) 

a*L IF;(L) dL 
. _ . 

F;(L) dL --- F;(L) dL 

Sj dF.(L) 

o*L F:(L) dL 1 
(3.24) 

where parametric dependence of p(S,,S,,...,SN) on 02L and L 
has been indicated in the arguments in the left-hand sides 
of Eqs. (3.23) and (3.24) for clarity. Setting Eq. (3.23) 
equal to zero yields our likelihood equation for o*L: 

02L = 
~jZ,~ ' (3.25) 

j 

Setting Eq. (3.24) equal to zero yields our likelihood equa- 
tion for L after substitution of Eq. (3.25): 

1 &- Rn 
S 

-A- (3.26) 
j=l Fj(L) 
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Equations (3.25) and (3.26) are a pair of ZikeZihood 
equations for L and 02L that involve the periodogram vaZues 
Sj3 j = 1,2,. s-3 N as parameters. Equation (3.26) invoZves 
0nZy one unknown, L, and therefore may be solved first. 
Once L is obtained from Eq. (3.26), Eq. (3.25) may be soZved 
for 0*. If we consider our turbulence sample w(t) to be a 
function of time of duration T, then the values of Sj are 
those obtained from Eq. (3.6) at values of fj = j/T. 

(3.27) 

and the values of Fj(L) are, in the eases of the von Karman 
transverse and longitudinal spectra, the values given by 
Eqs. (3.20) and (3.21) after substitution of 

kj = j/T . (3.28) 

In interpreting the resulting values of L as integral scales, 
care must be taken to properly account for the speed of the 
aircraft. A method for solution of Eq. (3.26) is described 
in Appendix F. 

Discussion. We can gain some insight into the general 
likelihood equations (3.25) and (3.26) by examining condi- 
tions that their solutions must satisfy. If we divide Eq. 
(3.25) by o*L and substitute Eq. (3.17) into the resulting 
expression, we obtain after minor rearrangement: 

(3.29) 

Furthermore, if we divide Eq. (3.26) by Na*L and combine 
the resulting expression with Eq. (3.25) and define 

Gj(L) 4 & Rn Fj(L) , (3.30) 

we obtain 
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(3.31) 

Equations (3.29) and (3.31) both are of the same general 
form - i.e., solutions L and cr*L to the likelihood equations 
(3.25) and (3.26) set weighted averages of [Sj/EISjIl - 1 
equal to zero. Since the standard deviation of the exponen- 
tial probability density of Eq. (3.10) is equal to its mean 
value EIS.1 = l/Xj, 

ik- 
we see that the standard deviation of 

each quan lty [Sj/ECSjIl in Eqs. (3.29) and (3.31) is equal 
to the same value of unity. 

Finally, we note that Eqs. (3.25) and (3.26) can be 
written in integral form 

(3.32) 

& En F(k;L) I[ j-$!$ - & 
2 1 J 

k2 
&$-$ dk' dk = 0 , 

kl 1 
(3.33) 

where continuous wavenumber k has taken the place of the 
discrete index j, and where S(k) = Sj and F(k;L) = Fj(L). 

Likelihood Equations for von Karman Transverse 

and Longitudinal Spectra 

To specialize Eqs. (3.25) and (3.26) to the von Karman 
transverse and longitudinal spectral forms, we require the 
functions Fj(L) defined by Eq. (3.17) and the derivatives 
of their logarithms with respect to L, Eq. (3.30): 

von Karman transverse 
1+188.75 L2k? 

Fj(L) Z F(kj;L) = 
[1+70.78L2k?111Y6 

J 

(3.34) 
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Gj(L) f & Rn F(kj;L) = i 
117.97L2kj (l-188.75L2kj) 

(l+70.78L2k;)(l+188.75L2k~) ' 

(3.35) 

von Karman ZongitudinaZ 

Fj(L) = F(kj;L) = 2 
[1+70.78L2k;15'6 

Gj(L) E & Rn F(kj;L) = - $ 
117.97 L*k? 

1+70.78 L2kj2 * 

(3.36) 

(3.37) 

The spectra, Eq. (3.17),associated with the Fj(L) above are 
two-sided spectra satisfying 

J 
Co 

02 = a*L F(k;L) dk , (3.38) 
-co 

where k is wavenumber in cycles/unit distance, and L is the 
integral scale of the longitudinal spectrum which is twice 
the integral scale of the transverse spectrum - e.g., p. 
425 of Houbolt [ICI. The exact values of the constants in 
Eqs. (3.34) to (3.37) are the left-hand sides of 

~5~ r(4/3) * [ 1 = 70.78 
r (11/6) 

2 SE.,, 
3 

= 188.75 

125_ W/3) * 
3 [ 1 = 117.97 

r(ii/6) 

(3.39) 

(3.40) 

(3.41) 

- see p. 83 of Ref. 18. 
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Discussion. The von Karman transverse and longitudinal 
functions F(k;L) of Eqs. (3.34) and (3.36) are shown in Figs. 
18 and 19, and the weighting functions Gj(L) (multiplied 
by L) of Eqs. (3.35) and (3.37) are shown in Figs. 20 and 21. 
We note first from Figs. 18 and 19 that the functions 
F(kj;L) q F.(L) appearing in Eq. 
L in the neighborhood near k = 0. 

(3.26) are independent of 
Hence, spectrum samples 

S-J near k = 0 contain no useful information for obtaining L 
from the likelihood equation (3.26) - this fact is reflected 
in the weight function G*(L) in that Gj(L) is zero near 
k = 0. We further see t at i 

Gj(L) = & Rn Fj(L) = --?Y-- 
dFj (L) 

Fj(L) dL 
(3.42) 

changes sign at kL = (188.75)-' for the transverse case shown 
in Fig. 20. However, from Eq. (3.42), we see that G*(L) is 
zero at values of L where dF./dL is zero; that is, 
where Fj(L) is indenendent o * L. 

a< points 
Here again, we see that 

G-(L) provides zero weighting to the values of k in Eq. 
d.26) h w ere Fj(L) is independent of L. Finally, we note 
from Figs. 20 and 21 that for large values of k, values of 
G*(L) approach a constant value. 

A 
Correspondingly, in Figs. 

1 and 19, we see for these same large values of k that 
variations in log Fj(L) with L are independent of k. 
Finally, there is nothing in the behavior of the likelihood 
equations or the functions shown in Figs. 18 to 21 to 
indicate that solutions obtained for L and 02L should be 
particularly sensitive to the hypothesis that values of Sj 
are mutually independent; hence, we would expect the 
likelihood equations (3.25) and (3.26) to also yield good 
results for nonstationary records with slowly varying non- 
stationary behavior [281. 

The statistical confidence of estimates of L and a2L 
will be discussed in a later section of this report. 
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CONSTRAINED LEAST-SQUARES ESTIMATION OF TURBULENCE 

AUTOCORRELATION FUNCTION PARAMETERS 

General Approach 

In the method for estimation of the integral scale and 
intensity described in Sec. 3.4, it is assumed that the tur- 
bulence time histories are drawn from a stationary, Gaussian 
random process possessing either the von Karman transverse 
or longitudinal power spectral forms. As we have discussed 
in Sec. 1 of this report, many turbulence histories recorded 
in practice have an additive low frequency (long wavenumber) 
component superimposed on what may be described as ordinary 
von Karman turbulence - e.g., see Figs. 4 through 6. Con- 
sequently, the likelihood equations derived in Sec. 3 should 
not be used with such records. 

When a nonnegligible fraction of the mean-square velo- 
city of a record is contained in the low frequency component 
w&>, we have decided to use, jointly, the autocorrelation 
function and the power spectral density of the record to 
estimate the integral scale and intensity of the von Karman 
component. After examination of the autocorrelation func- 
tions computed from a number of velocity histories recorded 
in the MAT Project [30], it became evident that over the 
range of the delay variable 5, say O<@<R, where the auto- -- 
correlation function of the von Karman component wf(t) is 
nonnegligible, the autocorrelation function of the low 
frequency component ws(t) could almost always be represented 
with reasonable accuracy by a low-order polynomial - e.g., 
see Fig. 5 of Ref. 19. A reliable model of the power 
spectra2 density of the low frequency component ws(t> of 
comparable generality and simplicity is not immediately 
evident. Therefore, let us express our autocorrelation 
model as 

o<E<‘+j Y -- (4.1) 

2- where cf = 
"fast " 

E(a$) is the mean-square value of the von Karman 
component wf(t), @K(s;L) is the appropriate (trans- 

verse or longitudinal) von Karman autocorrelation function 
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normalized so that @K(O;L) q 1, L is the integral scale of 
the von Karman component, and 

$w (5) = i aigi 3 o<~<$.j , _ _ 
S i=O 

(4.2) 

is the polynomial approximation to the autocorrelation func- 
tion of the slow component ws(t> which is valid over O<<<cH, -- 
and which can contain odd as well as even powers of 5. 
Equations (4.1) and (4.2) are consistent with Eqs. (1.18) 
(1.29) discussed earlier. 

We shall evaluate 6 and L by minimizing the integral 
squared-difference E between the autocorrelation function 
model, Eq. (4.1), and the empirically obtained autocorrelation 
function R(S) that Eq. (4.1) represents: 

Ei R(S) - q QK(5;L) - i (4.3) 
i=O 

where the minimization procedure will be constrained as 
follows. By definition, the "slow" turbulence component 
ws(t> contains predominantly low frequencies in comparison 
with the von Karman "fast" component wf(t). This comment 
suggests that there usually will exist a wavenumber k2 such 
that for values of k?ka, the wavenumber spectrum of a tur- 
bulence record w(t) will be, for practical purposes, dominated 
by contributions from the von Karman component wf(t) only. 
In this wavenumber region, we therefore may use the likeli- 
hood equation (3.25) which we now write as 

i 
j=l Fj(L) 

(4.4) 

L 

to constrain the minimization of E. In using this constraint, 
we shaZZ consider Eq. (4.4) to determine L as a function of 

03. Furthermore, only the spectrum values Sj for which 
k;ilka will be used in Eq.(4.4); that is, the summation over 
j in Eq. (4.4) wiZ’L include only the wavenumbers kjlka. 
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We may explicitly include the constraint, Eq. (4.4), in 
our formulation by rewriting Eq. (4.3) as 

E= R(5) - c2 @,CE;L(a2)l - F 2 (4.5) 
i=O 

aiEi 2 dS 3 

j 

where, for simplicity, we have used the abbreviated notation 

(4.6) 

and where, now, L is considered as the function of cf2 deter- 
mined by Eq. (4.4) f 
kj,kt. 

rom wavenumber spectrum values Sj for 
Trade-offs between choices of <H and m are discussed 

in Appendix G. A method that extends the model of Eq. (4.1) 
to the entire interval O<S<a, thereby permitting computa- -- 
tion of the integral scale and power spectrum of the slow 
component ws(t), is discussed in Appendix H. 

Discussion. By this juncture, the reader has undoubtedly 
asked why the second likelihood equation (3.26) is not being 
used for the range of values k.>k to determine L. Equa- 
tions (3.25) and (3.26) both a&suhe that the spectrum values 
Sj are obtained from turbulence sample functions possessing 
von Karman spectra. Thus, in choosing kx, we must be 
reasonably sure that for all kjzkl, the contribution from 
w,(t) to this portion of the spectrum is negligible. By 
careful examination of spectra measured in the MAT Project 
u31, we have concluded that for a large fraction of atmo- 
spheric turbulence records, such values of ki fall at the 
approximate location of the knee of the von Karman portion 
of the spectrum. Let us examine the behavior of the likeli- 
hood equation (3.26) for cases where the smallest value of 
j in the summation occurs slightly above this value at a 
wavenumber kj z l/L. Examination of Figs. 20 and 21 shows 
that for values of k>l/L, 
the constant value - 

Gj(L) is approximately equal to 

Gj(L) - - ~ ) kjzL-' , (4.7) 

where the value of -5/(3L) can be verified for both the 
von Karman transverse and longitudinal spectra from Eqs. 
(3.35) and (3.37). If we divide Eq. (3.26) by N and sub- 
stitute the above asymptotic value of Gj(L) into the re- 
sulting expression, we obtain 
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= 0 
or 

(4.8) 

which is saZisfied identicaZ2.y for any vaZue of L. Hence, 
when the smallest usable value kg of kj is L-l or larger, 
the likelihood equation (3.26) is satisfied identically for 
all values of L and therefore is useless. For somewhat 
smaller values of kx, Eq. (3.26) will still yield unreliable 
results. Hence, in essence, we have replaced Eq. (3.26) by 
minimization of the parameter E described by Eq. (4.5). 

On the other hand, the first likelihood equation (3.25) 
is perfectly well behaved when the only usable values of kj 
are the values kj>L-'. In fact, for the records that we 
shall discuss in the applications portion of this work, the 
likelihood equation (3.25) yields results with excellent 
statistical reliability. It therefore has been retained as 
the constraint L = L(02> in the minimization of Eq. (4.5). 

There exist two additional reasons for using Eq. (4.4) 
as a constraint in minimization of the integral squared- 
difference E given by Eq. (4.5). First, we note that when 
the degree m of the polynomial of Eq. (4.2) is taken too 
large, the von Karman autocorrelation function IJ% @K&L) 
can be represented quite well by the polynomial of Eq. (4.2). 
When this is the case, minimization of E - given by Eq. 
(4.3) - leads to set of ill-conditioned equations for L, 

a;, and ao,al,...,am. On the other hand, when Eq. (4.4) is 
included as a constraint in the minimization of E - as 
indicated by Eq. (4.5) - the von Karman component 
o2 @K[[;L(cJ')] remains dependent on only one parameter cr2 
in the minimization; consequently, the range of shapes that 
o2 @K[<;L(02)] can take on in the minimization is greatly 
'reduced, and for a given value of m, the minimization be- 
comes much better conditioned. This is a very important 
consideration when working with empirical data such as the 
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empirical autocorrelation function R(S) in Eq. (4.5). We 
shall see in the applications portion of this work how this 
improvement in conditioning yields improved results in 
certain specific cases. 

The second reason for using the constraint L = L(a2) 
of Eq. (4.4) is that we shall want to estimate the wavenumber 
spectrum of the "slow" component ws(t) by subtracting our 
best estimate of the spectrum of the von Karman component 
from the overall spectrum of w(t). Since the equation of 
constraint (4.4) was obtained directly from the wavenumber 
(or frequency) domain and represents an optimum estimate 
obtained from the von Karman portion of the spectrum, we 
would expect to obtain better results for the spectrum of 
ws(t) when Eq. (4.4) is included as a constraint in the 
minimization of E. 

Finally, we should comment on why it is possibZe for 
the minimization of E - as described by Eq. (4.5) and the 
constraint equation (4.4) - to yield potentially better 
estimates of 0' and L than use of the pair of likelihood 
equations (3.25) and (3.26) over the range of values of 
kjzkg where the wavenumber spectrum is dominated by the 
spectrum of the von Karman component wf(t). In setting up 
the quantity E represented by Eq. (4.5) to be minimized, 
we have included the representation, Eq. (4.21, of the auto- 
correlation function of the low-frequency turbulence com- 
ponent, w,(t). EquivaZentZy, we have incZuded a representa- 
tion of some of the information about the "sZow" turbuzence 
component w,(t) that wouZd be found in the wavenumber 
domain in the region k<kk. We also have included information 
about the von Karman component that would be found in the 
same low-wavenumber region k<kg. The reason we have chosen 
to work with the autocorrelation function representation 
of Eq. (4.1) rather than with a comparable representation 
of the spectrum of w(t) = ws(t> + wf(t) is that it is a 
Simple matter t0 make intelligent a priori choices Of <H 
and m for our representation of tw (5) given by Eq. (4.2) 
which should lead to good results ihen the integral squared- 
difference given by Eq. (4.5) is minimized. A representation 
of the wavenumber spectrum of ws(t> of comparable generality, 
simplicity and amenabZeness to anaZysis is not obvious. 
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Derivation of Algebraic Equations for 

Autocorrelation Function Parameters 

Let us now derive the equations whose solution yields 
a minimum value of E. That is, from Eq. (4.5), we wish 
to derive a set of algebraic equations whose solution for o* 
and ao,al,...,am minimizes the value of E given by Eq. (4.5), 

where Eq. (4.4) with T G o2 serves to define L as a function 
of c7* for use in the resulting set of equations. These 
equations are obtained by setting the derivative of Eq. (4.5) 
with respect to ao,al,...,am and cr* equal to zero, where L 
is considered as a function of 0': 

aE= 0 
aa 3 j=O,l,...,m A?- = 0 . 

j aa 
(4.9a,b) 

Differentiating Eq. (4.5) with respect to aj, we obtain 

aE 5, 
aa. = -2 

J 
I 1 R(S) - 0’ qmJb2 > 1 - F;j d-5 , 

J 0 

j=O,l ,-**, m. (4.10) 

Furthermore, differentiating Eq. (4.5) with respect to o2 
while treating L as a function of CI', we obtain 

aE - = -2 5, 
R(5) - a2 

au2 J f @,CS;L(a2)l - 

0 

a'K dL o*------ 
aL do* 

+ $,CE;L(a2)l (4.11) 

Setting Eqs. (4.10) and (4.11) equal to zero yields the set 
of m + 2 nonZinear algebraic equations for ao,al,...,am 
and 0' which can be written as 
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o* 
J 

'H j E ~K[E;L(o*)I dc + i ai 1'" Si+j dc = 
J 

'H j 
5 R(E) d5, 

0 
i=O 

0 0 

and 

j=O,l,...,m (4.12) 

a@K[c;Lb2)i dL 
aL 

do2 + $&<;L(02)l 
i 

x q~,C(;L(a~)l d5 

o* “KCS’L(a2)3 5 + @,[E;~(~*)] 
aL 

a~K[~;Lb2)l dL 
da2 + @,[~;Lb2)l R(S) dS , (4.13) 

aL 

where, from Eqs. (4.4) and (4.6), L(a*) is defined by the 
equation 

(4.14) 

where, as indicated earlier, only values of S 
$ 

dominated by 
the von Karman component are included within he summation 
in Eq. (4.14). 

For the von Karman transverse and longitudinal spectra 
of Eqs. (3.18) and (3.19), let us define the normalized 

-- 
spectrum Q,(k), where 

I; 0 Lk 3 (4.15) 
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GK(k) = 02L FK(Lk) ; (4.16) 

where the overbars denote normalized spectra and normalized 
wavenumber. Then, for either transverse or longitudinal 
spectra, the corresponding transverse or longitudinal auto- 
correlation function is 

m a2 @K(t) = J QK(k) ei2'rrk5 dk 
-co 

J 
co 

= 02L 5 (Lk) ei2nLkE/L dk 
K 

-co 

J 
cc = 0 2 cp 

K 
(I;) ei2nI;S/L dk 

If we define a normalized length measure by 

and a normalized autocorrelation function by 

(4.17) 

(4.18) 

(4.19) 

then, according to Eqs. (4.17) to (4.19), we may express 
@K(t) as 

$&~;L(02)l - @K(t) = &&/L) = T,(r) . (4.20) 
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Consider, now, the derivatives of $K with respect to 
L which appear in Eq. (4.13). According to Eq. (4.18), we 
have 

aC 5 -=--. 
aii L2 ' 

hence, from Eq. (4.21), it follows that 

a~,Cc;Lb*)l dTK(r) aE = 
aL d5 aL 

= - 
A dFK(r) 

L* dr ' 

Turning to the integrals that appear in Eq 
define 

. (4.13), let us 

II(L) e - J 
5, a@KmLb2)i 

~,[~;Lb2)l dS 
0 

aL 

(4.21) 

(4.22) 

J 

<H/L --,- - - = 5 @K(t) d),(t) dc , (4.23) 
0 

where Eqs. (4.18), (4.20), and (4.22) were used in going to 
the second line, and where 

. (4.24) 

The second integral that we require is 
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J 6HiL = q;(r) dF , 
0 

where Eqs. (4.18) and (4.20) have been used In going 
second line. Next, we require 

13(j,L) 4 - 1 J 
LJ 0 

a@K[wb2)i 
dS 

aL 

J <HjL = ,'+j T;(c) dr , j=O,l ,...,m 
0 

where Eqs. (4.18) and (4.22) have 
we also require 

(j,L) 4 --?I- J 'H j 
Ll+j 5 @,kL 

0 

(4.25) 

to the 

(4.26) 

been used. From Eq. (4.131, 

02>1 d5 

2 j=O,l ,'.', m , (4.27) 

where Eqs. (4.18) and (4.20) have been used. We next 
require 
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1 = J 5, 

R(0)L2 o 
5 F&/L) R(5) d< 

1 
J 

<HIL - -, - = 
R(O) o 

5 @,(<) R(Lc) d-f , 

(4.28a) 

(4.28b) 

where Eqs. (4.18) and (4.22) have been used. We further 
require 

1 
J 

5, 
= 

R(O)L o 
,(</L) R(E) dS (4.29a) 

1 
J 

cHjL 

= R(O) o 
T,(F) R(Lc) dc , (4.29b) 

where Eqs. (4.18) and (4.20) have been used. Two additional 
integrals are required for use in Eq. (4.12): 

I,(j,L) 4 1 'H j 
Ll+j 5 d5 

0 

(S,/L)lfj 
= , 

l+j 
j=0,1,...,2m (4.30) 
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and 

I,(j,L) 4 
R(O:L'+j o J 

" $ R (5) dE (4.3la 

1 ET/L 
= 

J 
-$ R(Lc) dc Y j=O,l,. ..,m (4.31b) 

R(O) o 

where Eq. (4.18) has been used. The above quantities I, 
through I, are dimensionless. 

Using the definitions of Eqs. (4.23) to (4.31), we can 
rewrite Eqs. (4.13) and (4.12) as 

= I,(L) + L I,(L) 
da2 1 

Li I,(i,L) + L1+i I,(i,L) 
1 

= -R(O) o2 = I,(L) + R(O)L I,(L) 
do2 

(4.32) 

and 

02L 14(j,L) + T ai L1+i I, (i+j ,L) = R(O)L I,(j,L) , 
i=O 

j=O,1,...,m . (4.33) 

Equations (4.32) and (4.33) for j=O,l,...,m constitute a 
set of m + 2 nonlinear simultaneous algebraic equations for 
o* and ao,al,...,am. For a given value of CJ*, Eq. (4.14) 
(inverted) determines the quantity L(a*). Equation (4.14) 
also determines dL/do2: 
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1 N [F.(L)+L Fj(L)lSj -' 
-- 

N c J (4.34) 
j=l L*F;(L) 

which yields dL/do* for a given value of L(a2>. 

Matrix Form of Algebraic Equations for 

Autocorrelation Function Parameters 

For numerical solution, the set of m + 2 equations 
(4.32) and (4.33) can be written in the matrix form 

Al+s2)yl + A12(cr2)y2 +...+ Al m+2(02)Ymt2 = xl(02) 
Y 

A21(U2)yl + A22(02)y2 '***+ A2 m+2(02)ym+2 = x2(a2) 
I) 

A mt2,1b2)yl + Amt2,2b2)y2 +...+ Amt2 mt2(~2)ym+2 = ~~+~b*) Y 

W35a) 

05 more concisely, as 

mt2 
c 

R=l 
AkR(02)yR = xk(02) , k=1,2,...,m+2 (4.35b) 

where 

Yl E 02, Yg E a!&2 for R=2,3,...,mt2 (4.36) 

-CL I,(L) + L I,(L) 
do2 I 

Xk q R(O)L I,(k-2,L) for k=2,3,...,m+2 (4.37) 
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A11 = -'* da* 
-CCL I,(L) + L I,(L) 

dL 
A1R - -'* da* 

- P2 I,@-2,L) + LR--l I+-2,L) , 

R=2,3,...,m+2 

Akl f L 14(k-2,L) , k=2,3,...,m+2 

AkR 
5 j-J-1 I,(k+R-4,L) , k=2,3,...,m+2; R=2,3,...,m+2. 

(4.38) 

Method of Solution 

Scaling of matrix equations. The m + 2 equations (4.35) 
were scaled before their solution was obtained - using the 
method suggested on pp. 118-119 of Hamming [4#]. This 
scaling is carried out as follows: 

1. Consider a new array of "coefficients" which is the 
array Aij in Eq. (4.35) with the right-hand side added as 
an additional column 

Al1 Al2 A l,m+2 x1 

A21 A22 . . . A2,m+2 x2 
. . . . . . . . 

A0 A' A0 
. 

m+2,1 m+2,2 m+2,mt2 'mt2. 

2. Call the above new array Ai. where i ranges from 
1 to m t 2 and j ranges from 1 to m 3 3. 

3. Form a new array Ai* from the array Alj where for 
every i=1,2,...,m+2 and j=l, ,...,mt3 3 

A' =2 
ri+cj+M 

Ll 
A!. . 

=J (4.39) 
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Formulas for ri, Cj, and M will be given in item 6 below. 

4. Let Y1,92Y-**,?m+2 be the solution to a new set of 
matrix equations which may be written in terms of our ori- 
ginal notation as 

ri+c.+M 
J A 11, t ?j= 2 

ri+c 
m+3 

+M 
2 

ij 
(4.40) 

5. Multiplication of every element by 2" does nothing 
to the solution. Multiplication of every row by 2ri does 
nothing to the solution. The effects of multiplication of 
the right-hand side by 2 Cmt3 

Cmt3 
can be eliminated by dividing 

every element by 2 . Therefore, the relationship between 
yj and y. is J 

(4.41,) 

In other words, for every j the solution y. of the original 
equations (4.35) is obtained from the solu ion sj of Eqs. 6 
(4.40) by 

(4.4lb) 

6. To determine values for ri, Cj, and M we first form 
for every pair of values i,j where i=1,2,...,mt2 and 
j=1,2,... ,m+3 the quantity 

d = 
l”glfjlAisl 

ij 
log1 o2 

(4.42) 

where /Aij 1 denotes the absolute value of Aij, and where 
A i,mt3 ' 'i as in item 1. Values of M, ri, and c 

J 
are then 

computed by 
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-1 m+3 mt2 
M= C C d-Jj 

(m+2)(mt3) j=l i=l 

r. = 1 & m;3 (dij+M) 
j=l 

-1 m+2 
'j = mt2 i=l - C (dij+M) . 

(4.43) 

(4.44) 

(4.45) 

Initialization of computation. Steps in preparing for 
solution of the matrix equations (4.40) are: 

1. Compute the unsmoothed power spectral density of the 
record of interest. Call the (unsmoothed) computed spectrum 
values Si. Pick lower and upper wavenumbers kg and k, which 
define a wavenumber region kg<k<ku where we are confident 
that the spectrum is dominated by the von Karman component 
of the turbulence. For values of Si that fall within this 
wavenumber region, determine for a set of equally spaced 
values Of Lj the quantity 

cl j' (4.46) 

as defined by Eq. (4.14), where Fi(L) is given by Eq. (3.20) 
for transverse (vertical or lateral) records and by Eq. 
(3.21) for longitudinal records. When a2(Lj) is computed 
for a range of equally spaced values of L., we have a2 as a 
numerical function of the integral scale 2 
tion is to be considered as determining L 6s 

This tabula- 
a function of 

u2. Values of L falling between tabulated values of Lj 
are obtained by interpolation. 

2. Values of dL/da2 also are required as a function of 
u*. In our computations, we used the approximation 

dL Ljtl-Lj -z Y 
da* 

(4.47) 
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where the values of L and o2 in the right-hand side of Eq. 
(4.47) are those computed by Eq. (4.46). A more accurate 
procedure would be to compute dL/do* by Eq. (4.34) for the 
same values of Lj used in Eq. (4.46). 

3. From the autocorrelation function R(S) of the 
record under consideration, 
used in Eqs. (4.46) 

and for the same values of Lj 
and (4.47)' the integrals of I, through 

I, given by Eqs. (4.23) through (4.31) are computed numer- 
ically. Each of these integrals is a function of the 
integral scale L. Thus, 11 through I8 is to be computed for 
each of the above mentioned equi-spaced value of La. The 
values of the integrals are then tabulated. Compu t ation of 
these integrals requires the functions FK(c) and si(r) which, 
for von Karman transverse and longitudinal spectra, are: 

for von Karman transverse spectra (vertica2 and ZateraZ 
components): 

&$c, = 
22/3 

( f3-0 1'3 K,,, (8c) - g r K_,/, (Bs) 
r(l/3) I 

(4.48) 

$&5) = B (BT> 4'3 K1,3(Br) - ; (Br)1/3 K-2,3(Pi) (4.49) 
2ti3r(1/3) 1 

for von Karman longitudinal spectra: 

T,(r) = 
2d3 

r(1/3) 
(Br> 1'3 Q3 ( Br> 

@k(i) = -2 
?.I3 

’ 
r(1/3) 

(8)1’3 K-2,3(Si) , 

(4.50) 

(4.51) 

where 

B b 2J;; r(lli6) 
Y 

5 W/3) 
(4.52) 
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K 
l/3 and K- 2/3 

are modified Bessel functions of the second kind 
of order l/3 and -2/3, and r(a) is the gamma function. 
Values of the Bessel functions were read off of the tabula- 
tion on p. 228 of Ref. 45, 
K,/, (xl l 

- -, - 

where we note that KDti3(x) = 
Values of 5 (p,(S) were tabulated rather than values 

of &i(F), because T,(z) has a singularity at r = 0 whereas 
- -? _ 
5 G,(E) tends to zero as c + 0. Values of I1 through I8 
required for L # Lj were obtained by interpolation between 
the tabluated values of the IIs. 

SoZution for o2 and aOJal ,..., a,. Once L(cr2), dL/do*, 
and I1 through I8 are tabulated for a predetermined set of 
equi-spaced values of L = Lj, the solution to the set of 
equations (4.40) can be obtained. This solution yields the 
solution to the set (4.35) by Eq. (4.4lb). Although the 
scaled equations (4.40) were actually the set solved, we 
shall describe the solution procedure in terms of Eqs. (4.35). 

The coefficients Akg and the right-hand sides xk of 
Eqs. (4.35) are functions of the unknown variance 0' E y1 
of the von Karman component. Thus, Eqs. (4.35) were solved 
by trial and error. From a plot of the autocorrelation 
function of the record R(c), a rough estimate of 0' Z q 
is easily obtained. This value of o2 determines L = L(a2) 
and dL/do2 which are obtained by interpolation from pre- 
determined tabulated values of these quantities. 11 through 
Ia also are determined by interpolation from predetermined 
values tabulated as functions of L = Lj. Consequently, 
once the initial value of o2 has been chosen, the coef- 
ficients Aij,i,j=1,2,... ,m+2 and right-hand side xi, 
i=1,2 ,mt2 in Eqs. (4.35) are determined. Equations 
(4.35j'are then solved, the solution being a new value of o2 
and ao,al,...,a, [see Eq. (4.36)1. 
cl2 Y 

Using the new value of 
the coefficients Aij, i,j=1,2,...,mt2 and right-hand 

side Xi, i=1,2,... ,m+2 are again evaluated, and the set of 
Eqs. (4.35) is solved again. The new solution yields a 
new value of u* and values of ao,al,...,am. By comparing 
the solution values of o* with the input values of o2 for 
these two solutions, a new trial value of o2 is chosen and 
the set of Eqs. (4.35) is solved again after evaluation of 
the coefficients and the right-hand side using the new 
trial value of D*. In carrying out this procedure, we 
terminated the process when the input and solution values of 



o2 were in agreement to three significant figures. The final 
values of o2 E 2 of and L(a2> determine the spectrum of the 
von Karman component of the turbulence. 
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VARIANCE OF MAXIMUM LIKELIHOOD ESTIMATES OF von KARMAN 
TURBULENCE PARAMETERS 

In Sec. 3, a pair of equations (3.25) and (3.26) was derived 
whose solution yields maximum likelihood estimates of 02L and L 
from spectrum samples Sj, j = 1,2,===,N. These spectrum samples 
are to be computed from turbulence velocity records whose 
(expected) power spectral densities are assumed to be of the 
von Karman transverse or longitudinal forms. Since individual 
turbulence records are stochastic functions of time, estimates 
of 02L and L computed from such records also are stochastic. 
Thus, in any particular application the solution u2L, L to the 
pair of equations (3.25) and (3.26) is a two-dimensional random 
variable whose joint probability density function depends on the 
duration of the turbulence sample function from which the estimate 
of 02L and L is obtained. In this section, the probability 
density functions of maximum likelihood estimates of 02L and L 
are discussed. In addition, explicit formulas are given for the 
squares of the coefficients of variation - i.e., relative vari- 
ances - of c2L, L, and c2. 

Asymptotic Forms of Probability Density Functions 

of Turbulence Parameter Estimates 

In the "standard" class of problems that employs maximum 
likelihood estimation; 
functions Xje -hjSj, j 

each of the individual probability density 
= 1,2,***,N in Eq. (3.11) is identical. 

However, this is not true in the present application because the 
values of the parameters A* depend on j - as may be seen from 
Eqs. (3.12), (3.17), (3.203 and (3.21). 
exercised in applying the "Standard" 

Hence, care must be 
results to the present 

problem. 

The "standard" result that is our main interest is the 
asymptotic (large sample) form of the joint probability density 
function of our estimates of a2L and L obtained by solving Eqs. 
(3.25) and (3.26). In the standard class of problems mentioned 
above, such maximum likelihood estimates are jointly normally 
distributed in the large sample limit - see, e.g., p. 55 of 
of Ref. 38 or p. 155 of Ref. 46. In the present case, we shall 
appeal to the form of the multidimensional large sample result 
cited on p. 155 of Ref. 46, which avoids the troublesome problem 
of bias, and which is the multidimensional extension of the 
approach used by Cramer on pp. 550 to 504 of Ref. 8. 
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To justify use of the large sample asymptotic normal,form 
in the present "nonstandard" application, we must show as the 
total duration T of our turbulence sample function approaches 
infinity that (1) 8Rnp/a(c2L) and aRnp/aL are asymptotically 
jointly normally distributed with zero expected values at the 
true values of c2L and L and (2) sample values of a2Rnp/a2(02L), 
a2Rnp/a(a2L)8L, and a2Rnp/aL2converge to their respective 
expected values in the sense that fractional deviations from 
their expected values vanish with probability one as T + 00 - see 
PP. 154 and 155 of Ref. 46 and pp. 43 and 55 of Ref. 38. 

Consider requirement (1) first. According to Eqs. (3.23) 
and (3.24), ZIRnp/8(c2L) and aRnp/aL both are linear combinations 
of the independent random variables (Sj/Fj), j = 1,2,**=,N. From 
Eqs. (3.10), (3.12), and (3.17), it follows that each random 
variable (Sj/Fj) is governed by an exponential probability 
density function with the same (unknown) expected value of 02L. 
From this fact, it follows that at the true values of a2L and L 
we have E(aRnp/a(a2L)) = 0 and E{aInp/aL) = 0. To show that the 
two-dimensional random variable {aRnp/a(c2L), aRnp/aL) is 
asymptotically normally distributed as T + ~0, we employ the two- 
dimensional central limit theorem - e.g., pp. 285-287 of Ref. 8. 
Since, in the case of Eq. (3.24), we are dealing with a weighted 
sum of independent random variables, where the weighting function 
is -& RnFj(L), we first consider the behavior of the sums in 
Eqs. (3.23) and (3.24) over a typical limited fixed frequency 
range, say Af, as T + 03. According to Eq. (3.13), if the fre- 
quency range Af is fixed, as T + ~0 the number of samples within 
Af increases indefinitely since the frequency difference between 
adjacent samples of l/T. This behavior is true for every fre- 
quency interval Af over which the histogram S(f) - Eq. (3.6) - 
is computed. Since the slope of the weight function & anFj(L) 
is everywhere finite - see Eq. (3.30) and Figs. 20 and 21 -we 
may choose Af small enough so that & !?nFj(L) is essentially 
constant within Af. We may now apply the central limit theorem 
to the contributions of the sums in Eqs. (3.23) and (3.24) within 
each such frequency interval Af to show that the contributions 
from each such Af are asymptotically jointly normally distributed 
as T -f ~0. The sums in Eqs. (3.23) and (3.24) over all such dis- 
joint intervals then represent the sums of (nonidentically 
distributed) independent two-dimensional normal variables which 
are known to be normally distributed - e.g., pp. 212 and 316 of 
Ref. a. Hence, as T + 03, the two-dimensional random variable 
IaRnp/ab2L), aRnp/aL) is asymptotically normally distributed 
with zero mean value at the true values of 02L and L. 
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Let us now consider requirement (2) above. Forming the 
partial derivative of Eq. (3.23) with respect to 02L gives 

a2RnCp(S,,S2,===,SN;02L,L)I 
---- = 

a(a2LJ2 

N 2 
(a2L)2 - (a2~)3 j%l F~ - a2L ] ’ . (5.1) 

forming the partial derivative of Eq. (3.23) with respect to L 
gives 

a2~n[p(SI,s2,“.,sN;02L,L)1 
-. = 

a(a2L)aL 

1 N dF.(L) 
C CFj (L>I-2 AL Sj 

(o~L)~ j=l 

= - & anFj(L) . 2 (5.2) 

and forming the partial derivative of Eq. (3.24) with respect to 
L gives 

a2RnCp(s,,s2,=o=,sN;02L,L)I 
= 

aL2 

+ d2 - gnFj(L) 
dL2 
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aL2 

1 -- 
C12L 

9A?j(L) 

Taking the 
using 

S. 
& - . 

j 
(5.3) 

expected values of each of the above three equations, 

= c2L, (5.4) 

and introducing an obvious shorthand notation for the left-hand 
sides gives 

and 

E 
1 1 

a2Rnp = _ N 
a(a2L12 (a2L>2 ' 

E & anFj(L), 

(5.5) 

(5.6) 

(5.7) 

Let us define the fractional deviation of a2Rnp/a(02L)2 [given by 
Eq. (5.1)] from its expected value [given by Eq. (5.5)] by E~ - 
i.e., 

114 



Ca2Rnp/a(a2L)21-E(a2Rnp/a(a2L)2} - 
i EIa2Rnp/a(02L)2} 3 (5.8) 

and denote analogous definitions of the fractional deviations of 
a2Rnp/a(c2L)aL and a2Rnp/aL2 by E and ~~ respectively. From 
Eqs. (5.1) to (5.3) and (5.4) to ?5.6), it follows directly from 
the expression for e1 given by Eq. (5.8) and the corresponding two 
expressions for &2 and e3 that 

E2 = J 

(5.9) 

(5.10) 

and 

E3 = i ,1([ik . 
(5.11) 

We must show that el, c2, and eg all approach zero with prob- 
ability one as our turbulence sample duration T + 03. Since the 
random variables Sj/Fj(L) are each governed by an exponential 
probability density with mean value c2L, it follows from the 
(weak) law of large numbers - e.g., p. 228 of Ref. 47 - that 
e1 + 0 as T -t 00 with probability one. 
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To show that c2 + 0 as T + 00, we note first that, in the 
limit T + 00, the denominator of the right-hand side of Eq. (5.10) 
approaches the limiting constant value 

v, n= 
2 

(N,rN;)Ak 

N,AK 
-$- RnF(k;L)dk . 

lJIAk 
(5.12) 

This fact becomes clear when we observe (1) that the denominator 
in Eq. (5.10) is a2L times the average value of the derivative of 
anFj(L) with respect to L, (2) that, in the large sample limit, 
dependence of F-(L) on the discrete variable j is replaced by 
dependence on t ii e continuous variable k as shown in Eqs. (3.34) 
and (3.36), and (3) that in taking the limit T + ~0 in applications, 
we fix the lower and upper wavenumber limits 

k = NIAk, k 
1 2 

= N2Ak (5.13) 

where N = N, -N, and increase indefinitely the density of sampling 
points within the interval k, -k, so that the sum approaches the 
definite integral in Eq. (5.12) of the continuous function 

Gj(L) = -& &nF(kj;L) = & !JnFj(L) (5.14) 

shown in Figs. 20 and 21 for von Karman transverse and longi- 
tudinal spectra. 

Consider, now, the numerator of Eq. (5.10). Here, we may 
appeal directly to the form of the (weak) law of large numbers 
given on p. 238 of Ref. 47, which applies to sequences of non- 
identically distributed independent random variables. The 
numerator in Eq. (5.10) can be expressed as 

N2:; y xj, 
j=l 

where the 

xj = [& !JnFj(L)][.$ - c2L] 

(5.15) 

(5.16) 
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are the random variables of interest. Since Sj/Fj(L) is governed 
by an exponential probability density with mean a2L (independent 
of J), it follows that the random variable {[Sj/Fj(L)I-02LI 
has zero mean and variance (o~L)~. Hence, the random variables 
defined by Eq. (5.16) have zero mean and variances 

1 2 

a; = (02L)2 & J?nFj(L) . (5.17) 

A sufficient condition for N to vanish with probability one as 
T-tais - according to Eq. f5.6) on p. 238 of Ref. 47 - that 

Sri -=- 
N2 

= b2L>2 
N2 

& RnFj (L) 
1 

2 (5.18) 

vanish as T + 03. However, in this limit Eq. (5.18) approaches 

sii (02L)2 
1 

2 

- + N(N,-N,)Ak N2 
&- RnF(k;L) dk 

N,Ak 

& RnF(k;L) 'dk, 
I 

(5.19) 

where we have substituted N = N, -N, and have written the limiting 
form of the sum on the continuous function 

[ 
-&- RnF(k j,L) 1 2 as 

an integral as before. The right-hand side of Eq. (5.19) is pro- 
portional to l/N; hence, (sN/N) is proportional in the limit to 
l/m and therefore to l/n. c2 therefore approaches zero with 
probability one as T + 03. The argument that E must approach 
zero with probability one as T -+ 03 is carried zut in exactly the 
same way as that for Ed. 
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The maximum likelihood estimates of a2L and L therefore are 
asymptotically jointly normally distributed with mean values 
to the true parameter values (denoting estimates of a2L and L 

equal 

subscripts 1 and 2 respectively) 

ml 
= c2L, 

m2 
= L, (5.20 a&) 

and with covariance matrix A whose inverse is given by 

A 
-1 = 

(5.21) 

where 

A 11 = -E A =-E 
22 9 

and 

A = A,, = -E a'knp 
12 

ab2L)aLj 
(5.22 a,b,c) 

(p. 55 of Ref. 38 and p. 155 of Ref. 46). Expressions for the 
(negatives) of All, A12, and A21 are given by Eqs. (5.5) to (5.7). 

It is easy to verify that the inverse of A-l is given by 

A 
1\=1 

22 -A,2 

IA-‘1 [ 1 -A21 
A 

11 ’ 

'1 is the determinant of A-l, where IA- 

(5.23) 

[A-l 
1 = AllA22-A12A213 (5.24) 
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and where the form of Eq. (5.23) can be verified by multiplying 
Eq. (5.21) by (5.23) and using Eq. (5.24): 

1 0 

A-lA = [ I 0 1 . (5.25) 

If we write the covariance matrix A in the conventional form - 
e.g., P. 295 0f Ref. a - 

(5.26) 

it follows by comparison of Eqs. (5.22), (5.23), (5.26), and Eqs. 
(5.5) through (5.7) that we have 

u2 = -E{%} jYJ[& enFj(L)] 2 

1 pp/ - = 
IA--l I 

3 

N 

= b2U2 
In-1J ’ 

and 

E i -& anFj(L) 

P = ~ j=l 

up2 IA-l 1 
3 

1 2 

N 

(5.27) 

(5.28) 

(5.29) 
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where from Eqs. (5.22), (5.241, and (5.5) through (5.7), we have 

1 = -& anFj(L) (5.30) 
(a2L)2 

In summary, we have shown that solutions to the pair of 
likelihood equations (3.25) and (3.26) provide estimates to the 
true values of a2L and L that as T -t Q) are asymptoticaZZy 
governed by a joint norma probabizity density with mean vaZues 
equal to the true parameter values a2L and L as indicated by 
Eqs. (5.20 a,b) and with covariance matrix eZements given by 
Eqs. (5.27) to (5.30), where ut and ug denote, respectively, the 
variances of our estimates of u2L and L, and p denotes the 
correlation coefficient of these estimates. The limiting forms 
(as T + a) of o:, a;, and p for the von Karman transverse and 
longitudinal spectral forms will be evaluated in the next sectio 1. 

Expressions for Covariance Matrix Elements for 

von Karman Transverse and Longitudinal Spectra 

Let us turn now to evaluation of the large T limiting forms 
of the sums in Eqs. (5.27) to (5.30) which apply to our asymptotic 
joint normal distribution of the maximum likelihood estimates of 
a2L and L. We shall continue to use the notation established 
in Sec. 3 - Eq. (3.17) in particular - and at the end of this 
section we shall specialize the results to the von Karman spectral 
forms of Eqs. (3.20) and (3.21). 

First consider the expression for p given by the right-hand 
side of Eq. (5.29). If we divide both numerator and denominator 
of Eq. (5.29) by N, we shall require expressions for the two 
quantities 

anFj(L) (5.31) 

and 
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. (5.32) 

Since the right-hand sides of Eqs. (5.27) to (5.30) represent the 
limiting forms of the variances and correlation coefficient of 
our estimates of (r2L and L as T -f ~0, we can, without loss in 
generality, consider only the limiting forms of the right-hand 
sides of Eqs. (5.31) and (5.32) as T + 03. Denote these limiting 
forms by 

I(l) i lim 
Tjm +), (5.33 a,b) 

and consider I (1) first. Here, we shall consider the record to 
be of length L where L = VT, T being the duration of the record 
and V being the speed of the aircraft used in measuring the 
record. Hence, our N wavenumber spectrum samples Sj discussed 
in Sec. 3 are spaced at wavenumber intervals of 

Ak = l/L (5.34) 

[which correspond to frequency intervals of Af = l/T - see Eq. 
(3.13)1. 

Recognizing that the right-hand side of Eq. (5.31) repre- 
sents an average of (d/dL)RnFj(L), and that as T and L + ~0, our 
wavenumber spacing Ak + 0, we have for the limiting form of 
T(l) given by Eq. (5.33a): 

10) = 1 N,Ak 
-- 
NAk & RnF(k;L)dk, (5.35) 

N,Ak 

where 

N = N,-N1 , (5.36) 

and where we have used the notation of the left-hand identities 
in Eqs. (3.34) and (3.36). From Eqs. (3.35) and (3.37), we see 
that L(d/dL)RnF(k;L) is a function of only the product Lk; hence, 
let us define 
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H(Lk) b L & RnF(k;L). (5.37) 

Using Eq. (5.37), I(') can be expressed from Eq. (5.35) as 

p = 1 rNzAk H(Lk)Ldk (5.38) 
NL2Ak ilAk 

(E )dS, (5.39) 

where 5 = Lk. Let us define 

Ha3 6 ;t; H(E). (5.40) 

Re 
l'l 

cognizing that we are especially interested in the case of 
arge" upper limits N2Ak and N-LAk in Eqs. (5.35) and (5.39) 

now respectively, let us resrits Eq. (5.39) as 

I(l [H(S) -HaIdS + 
HW(N2-N,)LAk 

NL2Ak 

[H(S)+,,ldS + F , (5.41) 

where we have used Eq. (5.36). 

The likelihood equations (3.25) and (3.26) apply for any 
limits N, and N, in Eq. (5.41). However, generally we are 
interested in a (dimensionless) low wavenumber limit of 
k,L = N,LAk = 0, whereas the (dimensionless) high wavenumber 
limit k,L = N,LAk is usually taken to be the largest wavenumber 
for which the spectrum is still unaffected by instrumentation 
errors etc. This highest wavenumber is usually of the order of 
k2L z 10, where L is the integral scale of the turbulence. From 
Eqs. (3.35) and (3.37), we see that 
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H(Lk) = LGj(L) (5.42) 

which is plotted in Figs. 20 and 21 for the von Karman transverse 
and longitudinal spectra respectively. We shall show later that 
for both of these spectra we have 

H = _ ? = 4.6@5..., 
aJ . (5.43) 

and we see from Figs. 20 and 21 that for values of kL larger than 
about 3 this asymptotic value has, for practical purposes, been 
reached. Thus, for cases where kl 
may replace Eq. (5.41) by 

2 0 and k2L = N2LAk > 3L, we - 

$) ; 1 

I 

O” 
(1) 

co 
NL2Ak o 

[H(<)-Hm]dc + > = y + > , 
NL2Ak 

(5.44) 

where 

p 4 
00 

t-H(S)-HmldS. 
0 

(5.45) 

Let us turn now to 7 (2) defined by Eq (5.32) and its large 
T asymptotic form defined by Eq. (5.33b) - which is 

I(2) = 2-1 
N2Ak 

[ 
I 

2 

NAk -& RnF(k;L) dk , 
N,Ak 

(5.46) 

where the above limiting form is arrived at by the same arguments 
as were used in obtaining Eq. (5.35). Proceeding along the same 
lines as in the case of I (1) , we have upon introduction of the 
definitions of Eqs. (5.37) and (5.40), 
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I(2) = 1 I 
N,Ak 

H2(Lk)Ldk 
NL3Ak N,Ak 

1 
f 

N,LAk 
= H2(E>dE; 

NL3Ak N,LAk 

1 
I 

N,LAk Hi(N,-N1)LAk 
= 

NL3Ak N,LAk 
cH2 (E )-H;ldS + 

NL3Ak 

1 
f 

N,LAk H2 
= 

NL3Ak N,LAk 
[H2(E>-H;ldC + " , 

L2 
(5.47) 

where N = N, -N, was used in going to the last line. Again recog- 
nizing that we are dealing in the integrand with the quantity 
described by Eq. (5.42), we see from Figs. 20 and 21 that for 
lower (dimensionless) wavenumber limits k,L = N,LAk =: 0 and upper 
limits k2L = N2LAk larger than about 3L, we may replace Eq. 
(5.47) by 

+I i 1 
f 
O3 H2 

co 
NL3Ak o 

[H2(<)-HL]dc + " = 
42) H2 

+z, (5.48) 
L2 NL3Ak L2 

where 

p L 
f 

co [H2(C)-HildE . 
0 

(5.49) 
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From Eqs. (5.29), (5.32), and (5.33), it follows that the 
large T asymptotic form of the correlation coefficient p can be 
expressed as 

(1) 
Ha + (k;-kI)L 

= - - 
% 

HL + 
9 (5.50) 

where the second and third lines are valid approximations when- 
ever we have for the lower wavenumber limit in our likelihood 
equations (3.32) and (7.33) k, 2 0, and for the upper wavenumber 
limit we have k Hco is negative ,&3L . Notlce from Eq. (5.50) and the fact that 

lim 
k2= p = 1. (5.51) 

Hence, when k -0andk -+a, our estimates of u2L and L have a 
correlation c&efficient Zf unity. This limiting behavior may be 
understood from the fact that if L were known ezactZy, our esti- 
mate of a2L given by Eqs. (3.25) or (3.32) would improve 
indefinitely as k 
large enough k 

= N,Ak increases indefinitely; hence, for 

mate of a2L is2a 
a 1 of the statistical uncertainty in our esti- 1 

consequence of the uncertainity in our estimate 
of L - which is reflected in the fact that p + 1 as k, + 00. 

Let us turn now to evaluation of JA-l 1 given by Eq. (5.30), 
which is required in our expressions for a‘1 and 0; given by 
Eqs. (5.27) and (5.28). From Eqs. (5.30) through (5.33), we see 
that the large T asymptotic form of (A-l(/N2 can be expressed as 
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Hence, whenever k, =: 0 and k, 2 3Le1, we have for practical 
purposes 

W1l = 
N2 

(o:L)z [d2) - (Ii? )‘I 

2 

1 = 
p) 

+ H2 - 
p 

L2(a2L)2 (k,-k, )L (*) (k,-k, )L 
+ Hco II 

1 = 
L2(a2L)2NLAk 

43~ 

where Eqs. (5.44) and (5.48) and the 

NAk = (N2-Nl)Ak = k,-k, 

1) 

(5.52 

(k,-k$ ' 1 (5.53) 

relationship 

(5.54) 

have been used in going to the second and third lines in Eq. 
(5.53). Let us now define 

,(3) A 
f 

m~H(SbHm12dS 
0 

= I m~H2(5)-2H,H(5)+H~1d5 
, 
0 

f 

co 

= W[H2(<)-Hi,d<-2Hm 
f 

0 0 

[H 

I 

S)-HmldS 

= p - 2H,y('), (5.55) 
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- 

according to Eqs. (5.45) and (5.49). Combining Eqs. (5.53) and 
(5.55) with Eq. (5.34), we find that IABII/N can be expressed as 

1 In-ll = 
N 

,(3) (m2 
(c~~L)~L~/L - (k,-k,)L ' I 

(5.56) 

where y(3) is expressed in terms of y(l) and y(2) by Eq. (5.55), 
and where Eq. (5.56) is valid for practical purposes whenever 
k, =: 0 and k, 1 3L-l. 

If we divide the numerator and denominator of Eq. (5.27) by 
N, we can express the large T asymptotic form of 0: as 

1w 
rJ 2 = 

1 
JPI/N ’ 

(5.57) 

where Eqs. (5.32) and (5.33b) have been used. Recalling that 0; 
is the variance of our estimate of 02L 

i 
we can express the 

relative variance of our estimate of 0 L for the case where 
k, z 0 and k2 L 3L-1 using Eqs. (5.48), (5.54), and (5.56) as 

42’ - 

7k2-k,)L 

(Y 1 (1) 2 
(k,-k, )L 

(5.58) 

Similarly, if we divide the numerator and denominator of 
Eg. (5.28) by N, we can express the large T asymptotic form of 
o2 as 
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a; = 1 

(u~L)~~A-~]/N . (5.59) 

Recalling that cr2 
z- 

is the variance of our estimate of L, we can 
express the reZa zve variance of our estimate of L for the case 
where kl 2 0 and k, 2 3LD1, using Eq. (5.56) and (5.59), as 

-’ c L -=- p - ( 1 p) 2 
L2 l- (k,-k, )L 1 

= ,t) 4 l- (5.60) 

Finally, recognizing that Hoe is negative for both the von 
Karman transverse and longitudinal spectral forms, we can express 
the correlation coefficient of our maximum likelihood estimates 
of cr2L and L from Eq. (5.50) as 

(5.61) 

which is valid whenever k, z 0 and k, 13L-l. 

Equations (5.58), (5.60), 
this section. 

and (5.61) are the main resu'lts of 
Each of these three resuZts is the Zarge T 

asymptotic form of its left-hand side that is valid for praetiea2 
purposes whenever k It may be seen from 
Eqs. 

- 0 and k, 13L-l. 
(3.35), (3.37); 75.37), and (5.40) that for both the von 

Karman transverse and ZongitudinaZ spectra, we have 

H 117.97 = - Co 70.78 = 1.6667 = - ;, (5.62) 
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where -S/3 is the exact asymptotic resuZt. The other dimension- 

Zess constants y(l), yt2), and yt3) are defined in terms of the 
function H(c) by Eqs. (5.45), (5.491, and the first line in 
Eq- (5.55) respeetivety. The Zast Zinc in Eq. (5.55) shows that 
onZy two of these three constants is independent. The function 
H(c) = H(Lk) is defined by Eq. (5.371, where (d/dL)RnF(k;L) is 
given by Eqs. (3.35) and (3.37) for the von Karman transverse 
and Zongitudinal spectra respectively. L is the integral seaZe 
associated with the von Karman spectra2 forms, kl and k2 are the 
Zower and upper wavenumber limits used in the likelihood 
equations - see Eqs. (3.32) and (3.33) - and 1 = VT is the Zength 
of the record. 

Coefficient of Variation of Mean-Square Velocity Estimates 

We have shown earlier that, as T + ~0, our maximum likelihood 
estimates of 02L and L are asymptotically governed by a joint 
normal probability density with mean values equal to the true 
values of 02L and L, and with variances 0: and a;, and correla- 
tion coefficient p, as given above. In particular, Eq. (5.60) 
provides a general expression for the variance of our estimate 
of L (divided by the square of its mean). 

To get a comparable expression for the variance of our esti- 
mate of 0' where 

02L o2 5 y- 9 (5.63) 

we must consider the ratio of our estimates of a2L and L as indi- 
cated in Eq. (5.63). Since these estimates of a2L and L are 
asymptotically governed by a joint normal probability density, 
the estimate s2 of 0' (obtained by dividing an estimate of 02L 
by an estimate of L) is governed by whatever probability density 
describes the ratio of two (correlated) normal variates each 
having a nonzero mean value. When both mean values are zero the 
resulting density of the ratio is a Cauchy probability density - 
e.g., PP. 153-154 of Ref. 43 - however, when mean values are not 
zero the resulting density apparently cannot be written in closed 
form - e.g., p. 411 of Ref. 48. Fortunately though, we may 
obtain an expression for the variance of our estimate of o2 
using the method of Ref. 49 - even though its distribution cannot 
be expressed in closed form. 
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Merrill (Ref. 49) obtains a series expansion for the vari- 
ance of the ratio of two normally distributed variables which 
converges rapidly (at least in the asymptotic sense) whenever 
the coefficient of variation of the variate in the denominator 
is small -which in our case occurs whenever cr:/L2 is small - 
as will generally be the case. Adapting Merrill's notation to 
our case, let 

(5.64 a,b) 

Then Merrill's I, is our o2 and Merrill's I is our estimate of 
02. At the top of p. 56 of Ref. 49, Merrill gives an expression 
for the variance of the ratio - i.e., the variance of our esti- 
mate of o2 - which is 

+ 3v:v~+5p2v:v~+69v~-138pv:v2 

+ 15v~v~+54p2v~v~+*~*}, (5.65) 

where we carried through powers of six in the product vl and v2. 

We are primarily interested in cases where vi and v$ are 
small in comparison with unity. From Eqs. (5.58) and (5.60), 
we see that v: and vz are made small by increasing the length 
L of the turbulence record. In fact, when Eqs. (5.58), (5.60), 
and (5.61) are substituted into Eq. (5.65) - using Eqs. (5.64 a, 
b) -we see that the right-hand side of Eq. (5.65) takes on the 
appearance of a series in powers of L/L. If we retain only the 
first power in L/L, the relative variance of our estimate of 
CT' becomes 

Var(G2) = v2 

(a2>2 
1 

-2pv1v2+v;+o L2 9 
( 1 L2 

(5.66) 

where, according to Eqs. (5.64 a,b), v: and vz are given by 
7;~~~\5.60) and (5.58) respectively, and p is given by Eq. 

. . The coefficient of variation of our estimate of IS' 

is [Var(G2)/(a2)2]4. 
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The case of most interest is that for which k, is very 
large. To study this case, we can let (k,-k,)L+a. For this 
limiting case, we see from Eq. (5.51) that p = 1. Hence, as 
(k,-k,)L-, we have from Eq. (5.56) by retaining only terms 
of-first degree in L/L: 

Var(g2> _ (v 1-v2)2 , 
(02J2 

(k2-k$L+m 

(k,-k,)L-, (5.67) 

wh ere we have used Eqs. (5.64 a,b), (5.58), and (5.60) in going 
to the second and third lines, and where we have retained only 
the first power of L/L in the last line of Eq. (5.67). 

Numerical Results and Discussion 

Let us turn now to numerical evaluation of the above 
described quantities for the von Karman transverse and longi- 
tudinal spectra. We shall treat the longitudinal case first 
since the integrals required for this case are easier to 
evaluate than those for the lateral case. 

The case of most interest is that for which k, is very 
large, so we can let (k2 -k,)L= as before. In this case, we 
see from Eqs. (5.58), (5.60), (5.61), and (5.67) that 
g3> is the constant of primary importance - since we have 
already determined that H, = -5/3 [Eq. (5.62)3 for both the 
von Karman transverse and longitudinal spectra. 

The expression we shall use for y (3) is that given by 
the first line in Eq. (5.55): 

,(3) 4 J O3 CH(S)-H,12dS, 
0 

(5.68) 
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where H(C) is defined by Eq. (5.37). For the von Karman Zongi- 
tudina2 spectrum, we have from Eqs. (5.37) and (3.37): 

H(E) = _ 117*g752 . 
1+70.78c2 

Hence, H(<)-H~ can be expressed as 

H(E) - Ha = 117.97 _ l17.97E2 
70.78 1+70.78~~ ' 

which is of the form 

H(5) - HW = $- a-S2 - a 

l+bE2 - b(l+bc2) ' 

where 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

and 

b = 70.78. (5.73) 

From Eqs. (5.68) and (5.71) it follows that y (3) can be expressed 
for the ZongitudinaZ von Karman spectrum as 

(5.74) 

which is of the form of Eq. (3.251.11) on p. 295 of Ref. 50: 

J 
co 

(l+b<2)-2d< = + . 
4b' 

0 

(5.75) 
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Hence, for the von Karman ZongitudinaZ spectrum, we have 

,(3) = a * T 25 7~ 
0 

-=- 
b Qbk ’ 4(70.78+ 

= 0.2593. (5.76) 

From Eqs. (5.60) and (5.76), we therefore have for the rela- 
tive variance of our estimate of L as (k,-k,)L+m, 

5 - = 3.856 L/L, (5.77) 
L2 

whereas, from Eqs. (5.62), (5.67), and (5.76), we have for the 
relative variance of our estimate of o2 as (k,-kl)L+a, 

Var(G*) = 1.714 L/L, 
co*>* 

(5.78) 

where only the first power of L/L has been retained in Eq. 
(5.78). Equations (5.77) and (5.78) appZy to the van Karman 
Zongitudinal spectrum. L is the integral scale of the turbulence 
and L is the length of the record. 

Let us now turn to evaluation of the relative variance of our 
estimates of L and CT' in the case of the von Karman transverse 
spectrum. For this case, we again require the evaluation of y (3) 
given by Eq. (5.68) h w ere H(S) is defined by Eq. (5.37). For the 
von Karman transverse spectrum, we have from Eqs. (5.37) and (3.35): 

H(S) = 117.g7<2(1-188.75<2) 
(1+70.78~2)(l+188.75<2) ’ 

which is of the form 

H(S) = aS*(l-cc*) 
(l+b~2)(l+cS2) ' 

(5.79) 

(5.80) 
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where 

a = 117.97 

b = 70.78 = 2 a 

c = 118.75 = ; b . 

From Eqs. (5.80) and (5.81), we can see that 

(5.81) 

(5.82) 

Therefore, 

H(S)-H, = aS*O-CC*) + a. 
(l+b<*)(l+cS*) b 

(1+b~*)(1+c5*)+b5*(1-c5*) 

(ltbS*)(l+cS*) I 

=; 1+(2btc)<* 
(ltb<*)(ltc<*) ' 1 

(5.83) 

Combining Eqs. (5.68) 

for y(3) 
and (5.83) gives us the desired expression 

in the case of the von Karman transverse spectrum: 

1+(2btc)<* * 

I 
d5 

(l+W*>(l+cE*) 

=L a* 
0: 

co 
2 b 

[1+(2b+c>S*l* dE 
co (1+b~*)*(1+c~*)* ' 

(5.84) 

since the integrand is an even function of 5. 
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The integral on the right-hand side of Eq. (5.84) is readily 
evaluated by contour integration using the method outlined on 
pp. 584-587 of Ref. 51. This integration is carried out in 
Appendix I and yields 

y(3) = IT @+c)(7b2+c2) 

(c-b)3 4b' 
_ b(b2+b;t2c2) 

C2 1 (5.85) . 

When the exact values for a, b, and c given by the left-hand 
sides of Eqs. (3.41), (3.39), and (3.40) respectively [compare 
Eqs. (3.39) to (3.41) with Eqs. (5.81)] are substituted into 
Eq. (5.85), we find for the von Karman transverse spectrum that 

,(3) = 0.4437 . (5.86) 

From Eqs. (5.60) and (5.86), we therefore have for the relative 
variance of our estimate of L as (k2-kl) L+m, 

e - = 2.254L/L , 
L2 

(5.87) 

whereas, from Eqs. (5.67), (5.82), and (5.86), we have for the 
relative variance of our estimate of CJ* as (k2-kl)L+m, 

var(z2) = l.O02L/L ) 
co*>* 

(5.88) 

where we have again retained only the first power in L/L in Eq. 
(5.88). Equations (5.87) and (5.88) appZy to the von Karman 
transverse spectrum. L is the integral scale of the turbulence 
and L is the length of the record. 

Equations (5.77) and (5.78), which apply to the von Karman 
ZongitudinaZ spectrum, and Eqs. (5.87) and (5.88), which apply to 
the von Karman transverse spectrum, are the main numerical results 
of this section. 

Discussion. It is instructive to compare the values of rela- 
tive variance given by Eqs. (5.78) and (5.88), which apply to the 
von Karman longitudinal and transverse spectra respectively, with 
the values of relative variance of estimates of o* obtained by 
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squaring and averaging velocity records. The relative variances 
obtained for this latter estimation procedure are 1.732 L/L 
and 1.069 L/L [Eqs. (D.28) and (3.21) of Ref. 1.81 for von Karman 
longitudinal and transverse records respectively. Hence, the 
relative variances given by Eqs. (5.78) and (,5.88) of maximum 
likelihood estimates of cr* - i.e., 1.714 L/L and 1.002 L/L - 
are only very slightly smaller than the values of 1.732 L/L and 
1.069 L/L for the squaring and averaging estimation procedure. 
Nevertheless, the maximum likelihood method relative variances 
are smaller, as we would expect from the asymptotic efficiency 
normally associated with maximum likelihood estimates. 

The relative variances of 3.856 L/L and 2.254 L/L for maxi- 
mum likelihood estimates of L for von Karman longitudinal and 
transverse records respectively are, perhaps, of more interest. 
In contrast to the squaring and averaging procedure used to esti- 
mate 0*, reliable estimation procedures and associated variances 
for obtaining the integral scale from velocity records have not, 
in the past, existed. 
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AIRCRAFT RESPONSE EXCEEDANCE RATES 

In Sets. 4.2 and 4.3 of Ref. 19, a series expansion was 
developed for the mean rate of exceedances N+(y) with posi- 
tive sZope of a generic aircraft response variable past a 
specified level y. This result was derived for aircraft 
responses to the three component turbulence model of Eqs. 
(1.2) to (1.4) of the present report. However, these results 
are valid only for situations where the three locally sta- 
tionary conditions described in Ref. 19 are satisfied. In 
this section, a new expansion for the mean rate of exceedances 
N+(y) is developed; this new result depends only on the 
validity of the first locally stationary condition described 
by Eq. (1.8). This condition depends on turbulence properties 
only, and is beiieved to be virtually always satisfied. Thus, 
the results derived herein apply to supersonic aircraft with 
arbitrarily high Mach numbers - as well as to subsonic aircraft 
for which the results of Sets. 4.2 and 4.3 of Ref. 19 should 
apply. However, the derivations contained in the present 
section are considerably more involved than those of Sees. 4.2 
and 4.3 of Ref. 19, and in order to hold the complexity within 
bounds, we have assumed in the present section that the SZOW 
turbulence component ws(t) in Eq. (1.2) is negZigibZe in com- 
parison with the fast component wf(t). 

Application of Rice's Formula to Intensity 

Modulated Gaussian Processes 

In the derivation to follow, we shall evaluate Rice's 
expression for the mean number of crossings with positive slope 
per unit time N+(y) of a stationary process past the level y. 
It was shown by Rice [5] on p. 189-193 of the Wax edition 
that, for stationary processes, one has 

co 

N+(Y) = Pp(y,jr)Q, (6.1) 
0 

where p(y,jr) is the joint probability density function of the 
aircraft response y and its time derivative $r. A derivation 
of Eq. (6.1) also can be found on pp. 45-47 of Crandall and 
Mark [29]. 
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To evaluate N+(y) from Eq. (6.1), we shall use an exten- 
sion of the methodology developed in Sec. 2 of this report 
for evaluating the first-order probability density of the 
process y(t). On the first two pages of Sec. 2, we showed 
that the aircraft response y(t) conditioned on the process 
of(u) for all --m<u<t is strictly Gaussian with zero mean 
value, but generally nonstationary. This conditional re- 
sponse process is denoted by Cy(t)]of(u)), --m<u<t. Therefore, 
the joint probability density function of y(t) and y(t) con- 
ditioned on af(u) for --CO<u<t is a joint normal density 
function with zero mean vaiues for y(t) and y(t). Let us 
denote this joint conditional density function by p(y,ylof), 
where Of denotes the infinite dimensional "vector" crf(u), 
-m3<U<t, as described on the third page in Sec. 2 of this 
report. We therefore may formally express the unconditional 
joint probability density of the aircraft response and its 
first derivative as 

P(Y,jr >= mP 
i 
0 

(Y,jrl?f)P (0 ,)dgf , -f (6.2) 

where p(cf) denotes the probability density of the infinite 
dimensional vector of : of(u), --CO<u<t, and where the symbolic 
integration is taken over this same-infinite dimensional space 
as described on the third and fourth pages of Sec. 2 of this 
report. Substitution of Eq. (6.2) into Eq. (6.1) yields 

p(y,?l~f)p(~f)dgfQ (6.3) 
0 0 -.. 

When of : of(u), -m<u<t is specified, the joint density 
of y and y is a joint normal density with zero mean.values in 
y and y [Ref. 39, pp. 147, 1481 -i.e., 

P(Y,j'lQJ z P(Y,ylo2,&lJ .) Y Y YY 

(a5y2-21Ay$7g+02y2) 

2(a2c+y2.) 
YY YY 1 = 

% e 
2n(020?-p2.) 

YY YY (6.4) 

7.38 



where we have defined the conditional expectations cr2, 
and vyy as 

y $3 

OY 
2 = o;(t) 4 EzCy2(t)jaf(u)), -m<u<t (6.5a) - 

a: : a;(t) a Ez{92(t)lcrf(u)), 
Y 

--OO<u<t - (6.5b) 

. 
I-lYY E Uyg(t) 4 Ez{y(t)y(t)jof(u)I, --co<u< t _ ) (6.5~) 

each of which is a stochastic function of time t that is deter- 
mined by the behavior of the stochastic modulating process 
af(u> over the time interval --03<u<t. Thus, the expectation 
operations in Eqs. (6.5a) to (6.5c) are taken over variations 
in the (stationary Gaussian) modulated process (z(t)] in our 
turbulence model of Eqs. (1.2) to (1.4). [Recall that, in 
this section, we are assuming w,(t) F 0.1 We have indicated 
that these expectations are with respect to the process {z(t)) 
by placing the subscript "z" after the expectation operator 
"E" in Eqs. (6.5a) to (6.5~). 

Noting that Eq. (6.2) expresses the mathematical expec- 
tation of the response joint conditional density p(y,ylGf) 
with respect to the modulating process (crf(u)l, --co<uLt, we 
can also express Eq. (6.2) as the expectation 

which when combined with Eq. (6.1) yields 

00 

N+(Y) = yEDf~P(Y,y\?f)}dy 2 
0 

(6.6) 

(6.7) 

which we shall now proceed to evaluate in terms of measurable 
metrics of the modulating process {of(t)}. 
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Series Expansion of Conditional Joint Probability 

Density of Aircraft Response Displacement and Its Derivative 

As in Sec. 2, we are interested here in excitation 
processes wf(t) = of(t) z(t) where typica fluctuations in 
of(t) are not more than about one-third* of the mean value 
of of(t). Different sample functions of(u), --m<u<t give 
rise to different values of the three parameters z;(t) 
o;(t), and P yp > in the probability density, Eq. (6.4), 

as may be seen from Eqs. (6.5a) to (6.5~). Hence, in a 
manner analogous to the approach used in Sec. 2, we require 
here a truncated Taylor's series representation of the joint 
normal density, Eq. (6.4), in the three-dimensional para- 
meter space ~3' y, a;, and u 

YG' 
The expansion will be centered 

-- 
about the point defined by the mean values p, a?, and p 
of the variables o\:(t), o:7(t), and I-l,,.$t): 

Y Y Yjr 

*The approximate upper limit of one-third for the typical 
fluctuation 6of(t) relative to the mean crf is arrived at as 
follows. Denoting expected values by overbars and fluctua- 
tions by delta, we have 

o=a+tb, 

hence 

o2 = (0 

and 

j2 + 2a6cI+(Ba 

7 = (a2 + nFF, 

since % E 0 by definit ion. 
have 

0 2 - CT2 = 2Z6-60 + (60 

=: 2aC3o , 

12 

(4 

2 > (b) 

cc> 

Therefore, from (b) and 

- (Sd2 

Cc>, we 

Cd) 

since, by assumption, we have 60 << cr. From (d) it follows 
that 
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a? a= E 
Y 

{cr2 (t)) 
Of 9 

and 

(6.8a) 

(6.8b) 

(6.8c) 

where we have again used the subscript on the expectation 
operator to denote the process that the expectation is taken 
with respect to. 

E~(cJ~-&~~ =: 4(;)2E{(Su)21. 

From (c), we also have when 6cr << z 

(e) 

u2 =: (op; (f) 

hence, combining (e) and (f) yields 

(g) 

where EC(CSU>~~ is the variance of 6a since Ba Z 0. Applying 
(g) to oy, and using the definition of y given by Eq. (2.27a), 
we have 

Moreover, from Figs. 9 to 16, we see that the largest value 
of y that gives rrFood" accuracy is y = 2. 
have (4~ )-% I 8-5 = 

For this value, we 
0.354 which is slightly more than one- 

third. Therefore, since typical relative fluctuations in 
CI (t) should never be larger than those of of(t), we conclude 
t K at whenever typical fluctuations in af(t) are not larger 
than one-third of the mean value of of(t), our methods should 
provide reasonably accurate results. 
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In order to evaluate a common form of the multi- 
dimensional Taylor's series [e.g., p. 338 of Ref. 353, we 
require an expression for the square of a trinomial: 

(x+y+z)2 = (x+y>2 + 2(x+y)z+z2 

= x2ty2+z2+2xy+2xz+2yz. (6.9) 

By combining Eq. (6.9) with Eq. (57) on p. 338 of Ref. 35, 
we obtain a Taylor's series represe+taHon of the right-hand -- 
side of Eq. (6.4) about the point ay, 03, uyy. Taking the 
the expected value of this representation with respect to 
the process of(t) yields in straightforward fashion 

-- 
EOf{p(y,y[af)? = P(Y,yj$ $, I-lyy) 

t ~~f~(~~-o~)~P(~'o'o)(Y,~l~, 3, lJyg 

-- 
t E~fl(o~-o~)}p'o,l,o'(y,~~~, c$, Uyp) 

t higher order terms, (6.10) 
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where Eq. (6.9) was used in writing out the last six terms 
in Eq. (6.10). In Eq. (6.10), we have used the definition 

-- 
P(iyj~k)(y,Sl~, + Lly$ 

A a i+j+k 
= P(Y,YlD2Y y 53, lJyg 

2 =yF 
OY Y 
cs;= 9 7 

!J Y9 = pY$ 

(6.11) 

where p(y,9102, o;, uy3) 
Y 

is the joint normal density given by 

the right-hand side of Eq. (6.4), and where the partial 
derivatives are evaluated at the expansion center defined 
by Eqs. (6.8a) to (6.8~). The partial derivatives evaluated 
at this expansion center are not random variables. Thus, 
the expectation operation with respect to the process of(t), 
Eclf{p(y,Sl :,)I, in the left-hand side of Eq. (6.10) yields 
the expectations Ecr c l **I of the various expansion coefficients 

f 
in the right-hand side of Eq. (6.10). In Eq. (6.10), we have 
included all terms with partial derivatives of order itjtk = 2 
or less, which contain all terms with powers of two or less 
in products of the random variables (a 
(11 .-l+. 

;-q, co;-q, 

6X 
It is an implicit property of the Taylor's series 

ex nsion that the terms written out in the right-hand side 
of Eq. (6.10) are the most significant terms - provided that 
fluctuations in af(t) about its mean values are not too large 
as indicated earlier. Since, we have 

and 

Eofi (11 y9-iq-p = 0 , (6.12) 
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the first three "correction" terms to p(y,glq, G?, u .> 

in the right-hand side of Eq. (6.10) are identically izro. 
We shall now proceed to develop expressions for the six 
remaining correction terms written out in Eq. (6.10). 

Evaluation of derivatives of joint Gaussian probability 
density. The somewhat tedious job of evaluating the six 
partial derivatives p itjtk = 2, 

required in Eq. (6.10) is carried out in Appendix J of this 
report. The resulting expressions evaluated at the expected 
values of 0' o? 

9' YY 
and 1-1 yq for use in Eq. (6.10) are given 

bv Eqs. (6.?5) to (6.20). In evaluating these 
we have used the fact that 

i- Y? 
: EGf{'ly4} = 0 , 

which is shown later by Eq. (6.74). Equation 6.14) gives 
the joint density of y and j, also evaluated at the expected 
values of G2 yY 05, and p 

Y3 : 

expressions 

(6.13) 

pwyo+y - = Y Gla” 
Y’ 

x 
Y’ uyji) 

4c;,2 3 - 6 + 3 5 Y -I& Y 1 
p(o,o,2) (Y,jrl yY JiY I-ly$ 7 7 - 

) = & (I- $) (I - 5) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 
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L 
.3 
Y -3 9 

(iz, "'2 (ip 

(6.19) 

(6.20) 

In each of the above six relationships, p is the joint normal 
density function given by Eq. (6.14); furthermore, in arriving 
at each of t,hese six relationships, we have used the fact that 

pY3i 
= 0 as indicated by Eq. (6.13). 

Series Expansion for Aircraft Response Exceedance Rates 

According to Eqs. (6.7) and (6.10), we must now multiply 
each of the above seven expressions, Eqs. (6.14) to (6.20), 
by j, and integrate each resulting expression with respect to 
y from zero to infinity. Examining Eqs. (6.14) to (6.20), we 
see that these integrations require evaluation in the follow- 
ing expression for values of n from 1 to 5: 

a, 
I(n) A jr"p(y,9l<, 3, vyg)dB . (6.21) 

0 

These integrals are easily evaluated with the aid of Eqs. 
(3.461-2) and (3.461-3) on pp. 337 of Ref. 50 yielding: 
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AL p-1/ n-l 
2 2 

ICn) 1 n-l = zF 0 2 e "?J 
7 

T! (29) , 
Y 

( ) 

and 

-25 
n-l 

2 
Y 

n = 2,4,6,***, (6.23) 

(6.22) 

where in Eq. (6.23), we have used the definition 

(n-l)!! i 1*3*5***(n-1), (6.24) 

and in Eq. (6.22) we have used the usual definition of a 
factorial. Evaluation of Eqs. (6.23) and (6.24) for n from 
1 to 5 gives 

-XL 

(6.25) 

(6.26) 

I(3) = 2 0; I(1) (6.27) 

%(l) (6.28) 

and 

I(5) = 8 ($)2I(1) . (6.29) 
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When Eq. (6.10) is substituted into Eq. (6.7), we see 
that we must multiply each of Eqs. (6.14) through (6.20) 
by jr and integrate the resulting expressions from zero to 
infinity. When these integrations are carried out with the 
aid of Eqs. (6.25) through (6.29), we find that the mean 
threshold crossing rate with positive slope N+(y) can be 
expressed as 

N+(Y) = 

1 
Eofl (u yji-'Jyjr) 2l 

-- 2 -- cr; cr; ( 1-2 7 
Y 1 

t higher order terms. (6.30) 



In arriving at Eq. (6.30), we have made use of Eq. (6.12) 
and the fact that 

00 
9 p(o,l,l) (y.,jrlq, 3, uyji) dj7 = 0 . (6.31) 

0 

The "higher order terms" in Eq. (6.30) arise from the terms 
with the same label in Eq. (6.10). As mentioned earlier, 
the "slow" turbulence component w,(t) in the turbulence model 
pi ",zj (1.2) has been assumed to be zero in arriving at Eq. 

We also have used the fact that 1-1 
at'Eq.'(6.30). 

. = 0 in arriving 
Later on in this section, $z ihal show that 

the Zast dispZayed term in Eq. (6.30) is identially zero, 
[Eq. (6. 71) 1. 

The problem of finding expressions for the expansion 
coefficients in Eq. (6.30) will be addressed next. 

Expression for Exceedance Rate Expansion Coefficients 

Here, we shall derive a general expression for the 
expansion coefficients E {***I in Eq. (6.30). We shall 

"f 
then show how the various individual expansion coefficients 
in Eq. (6.30) can be computed for an arbitrary aircraft 
modeled as a linear time-invariant system. 

All three conditional response variables defined by 
Eqs. (6.5a) to (6.5~) can be expressed by the single quantity 

lljk ' ~jk (t) a= EzIyj(t)jk(t)lcjf(u)l, - a<u<t, - 

j+k=2, (6.32) 

where superscripts j and k denote powers of y(t) and y(t) 
respectively, and E,C*=*la,(u)], --m<u<t denotes expectation 
with respect to the process {z(t)) conditioned on the process 
Cof(u)} for -m<ult, where z(t) and of(t) are components in 
our turbulence model of Eqs. (1.2) to (1.4). Thus, by 
comparing Eqs. (6.5a) through (6.5~) with Eq. (6.32), we 
see that 
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0.2 = 

Y - 'jk for j =2,k=O (6.3%) 

a? = 
Y - 'ljk for j =O,k=2 (6.33b) 

pYU ' ‘ljk for j = 1, k = 1 (6.33~) 

Using the notation of Eqs. (6.32) and (6.33), we can now 
express any of the expansion coefficients in Eq. (6.30) in 
the general form 

E, ‘(iJj Ik’-i-lj IkI ) ('-'j "k',-llj "kII)l 
f L 

a=, 
Of K 

Ez[yj'(t)yk 

X Ez[yj"(t)jk"(t) 

(t)la,l - EzCyj’ wPk’(t)la,l 

- 11 

afl - EzlyJ w$k”(t)iofl (6.34) 

where we have used cs 
as before, 

to denote conditioning on of(u), --CO<u<t 
and wherefthe overbar denotes an expectation with 

respect to the process ccr (t)]. The individual expansion 
coefficients in Eq. (6.307 that are particular cases of 
Eq. (6.34) are obtained using the values of j', k', j", and 
k" shown in Table 1. The last entry, E ((o?-a?)(~ 
is not required for use in Eq. (6.30) bzEauseyitz 

YY-"Y9) ' 
"multiplier" 

was shown to be identically zero. 

To obtain a general expression for pjk(t) defined by 
Eq. (6.32) that covers all three cases listed in Eq. (6.33), 
let us now define the generalized "instantaneous cross- 
correlation function" of the aircraft impulse response as 

$$, h (T,t) a= hj(t - $, hk(t t 3) , 
j k 

where hj(t) and hk(t) are tabulated in Table 2 for the three 
cases listed in Eq. (6.33). Functions H(t) in Table 2 are 
the time-derivatives of the aircraft impulse response functio 
h(t). Since convolution of h(t) with the input yields y(t) 
as indicated by Eq. (1.21), it follows directly from Eqs. 
(K.14) and (K.15) in Appendix K that Table 2 contains the 
appropriate definitions of hj(t) and hk(t). 



TABLE 1. VALUES OF THE PARAMETERS IN EQ. (6.34) THAT YIELD 
THE INDIVIDUAL EXPANSION COEFFICIENTS IN EQ. (6.30) 

Coefficient - 1 J k' * 11 J k" 

2 0 

2 0 

1 1 1 

~--- .- 
0 

1 

1 

___- 

E Ch 
Of 

yp& 2 1 

- - 
E C(+;)(a;-$)I 

Of 
0 2 

2 0 

__~._ ~_. 
2 0 

TABLE 2. DEFINITIONS OF h;(t) AND h+) FOR USE IN EQ. (6.35). 
J n. ---...- ~. _-.. hk(t) -_ .~ h(t) I 

---;-.- .- 

h.(t) 

h(t) 

Response variable J k 

0 I 2 

2 
I 

Fljk = I 0 

h(t) 1 
I 

I-ljk = 'lye I 1 
I I ___- -- 
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To apply the results of Appendix K to the computation 
of pjk(t), we further let 

xjw = x,(t) = w,W/a,(u) = a.p)z(t) , (6.36) 

in Appendix K, where wf(t), of(t), and z(t) are components 
of our turbulence model of Eqs. (1.2) to (1.4), and where 
the conditioning operation in Eq. (6.36) indicates that of(t) 
is to be treated as a known function. With the interpreta- 
tions provided by Eqs. (6.35) and (6.36), the instantaneous 
cross-spectrum input-response relation of Eq. (K.21) becomes 

03 
0 

'jYk 
(fJlQ = @wf(f,t-UIQ)@h h (f,u)du , (6.37) 

-co j k 

where @ 
'jyk 

(f,t/cf) is the instantaneous cross-spectral 

density of pjk(t) [defined by Eq. (6.32)], Oh h (f,t) is the 
.i k 

Fourier transform with respect to T of Eq. (6:35) as inter- 
preted by Table 2, and @ > is the Fourier transform 
with respect to -c of 

$ 
Wf 

h,tlQ 4 af(t - $) af(t + ;, $,(T) , (6.38) 

where $I ('c) is the autocorre 
z(t) ofZthe turbulence model 

lation function of the component 
of Eqs. (1.2) to (1.4), and 

crf(t) is to be considered as a known function in Eq. (6.38). 

When we apply the locally stationary approximation pro- 
vided by the first term on the right-hand side of Eq. (2.45), 
we have 

owf(f,tlgf) x apJoz(f) 9 (6.39) 

where Q,(f) is the Fourier transform of 4 (T). By substi- 
tuting Eq. (6.39) into Eq. (6.37) and intggrating over all 
f, we obtain 
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pjk(t) = 
f 
m@ (f,tlgf)df 

-co YjYk 

co 

= 
f 

a;(t-u) 
f 

03 

@,(f)Qh h (f,u)dfdu , (6.40) 
-03 -03 j k 

where we have interchanged orders of integration in going to 
the second line, and where we have used the fact that 
@ 

'jYk 
(f,tla,) is the conditional instantaneous cross-spectral 

density of (yj(t)l and {yk(t)), j + k = 2, whose integral 
over --co<f<co yielT;.yJyit' - see Eq: (6.32) and the general 
property of Eq. By extension of Eq. (2.54), let 
us now define 

Yhjhkyz(t) ii !"@s(f)Ohjhk(f,t)df , -cxJ 

where as noted above, we have 

f 

co 

(3 h h (f,t) ’ 

j k 
hj(t - z) hk(t + $) e-i2nfrdT, 

-CD 

(6.41) 

(6.42) 

where h.(t) and hk(t) have the interpretations listed in 
Table 2? Substituting Eq. (6.41) into Eq. (6.40) yields the 
desired form for ujk(t): 

m VjkW = 
f 

a;(t-u)yh h (u>du . 
-co j kjZ 

(6.43) 

In particular, taking the expected value of lo 
jk(t > with respect 

to the process a,(t) gives 
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- f 

03 

~jk = 

-5- 

'fYh h (u)du ; 
-m j k,Z 

(6.44) 

hence, from Eqs. (6.43) and (6.44), we have 

O1 Iljk(t) - ‘ljk = 
f 

[~r(‘-U)-~Iuhjhk,z(U)du l (6.45) 
-co 

We recall now that each coefficient in the left-hand 
column of Table 1 is of the form of Eq. (6.34); thus, each 
coefficient is the expected value with respect to (af(t>) 
of cross-products of the form of Eq. (6.45). Furthermore, 
we see that Eq. x.45) is the convolution of the stochastic 
function [cr$(t)-ot] with the "system characterization" 

'h h j k,Z 
(t) - Thus, we can use the result, Eq. (~.26) 

of Appendix K, appropriately interpreted, to obtain a general 
formula for E 

Of 
~(u~,~,-P~,~,)(P~,,~,,-P~,,~,,)}. To apply Eq. 

(K.26) to this situation, we require the Fourier transform 
Of 'h h j k,Z 

(t>: 

Thus, applying Eq. (K.26) to the present situation gives 

m 
0 P(V)?{ 

-00 "f * ? 
,(-VI dv , 

J hk' 3' (-')?h.,,h 
J k"' 

(6.46) 

(6.47) 

where Q 2(v) 
Of 

is the power spectral density of the process 
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. ---- 

{a:(t)-31 which has no d-c value, the functions yh h (v) 
j k 

are defined by Eq. (6.46) with primes added as appropriate, 
and the superscript asterisk denotes the complex.conjugate. 
The negative arguments in Eq. (6.47) arise from the fact 
that we have used a positive exponent in Eq. (6.46), whereas 
the transforms H.(f) and Hk(f) in Eq. (K.26) are defined as 
in Eq. (1.9) witi negative exponents. Equation (6.47) is 
the main result of this subsection. 

Expressions For System Characterizations 

Here, we examine the system characterizations with respect 
to the process (z(t)) that are defined by Eqs. (6.41) and 
(6.46). First, we note that y, h ,(t) also can be expressed 
as 

'h h j kyZ 
(t 

cp h.h 
Jk 

(f,t) = J hj(t - $)hk(t + $-)cos(2nfT 

Qz(f) Re Qh h (f,t 
-m j k 

)df (6.48) 

where Re Qh h (f,t 
j k 

> denotes the real part of OL 1? (f,t). To 

show this, we note 
expressed as 

'lj "k 
from Eq. (6.42) that Qh h (f,t) 

j k 
can be 

f 

0 

-i hj(t - ;)hk 
-co 

(t + $)sin(*nf-c 

d-r 

d-r. (6.49) 

Since h.(t) and hk(t) are real, 
(6.49) ?s real, 

the cosine integral in Eq. 
whereas i times the sine integral is 

imaginary. Moreover, the sine integral is an odd function 
of f. Since Q,(f) is an even function of f, the contribution 
of the sine integral in Eq. (6.49) to the integral yh h 

j kyZ 
(t> 
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in Eq. (6.41) is zero. We are left with the contribution 
of the cosine integral, which is the real part of Qh h (f,t), . 
;;s&;icated by Eq. (6.48). Since Qz(f) is real, itJPEZZows 

h.h 
J kyZ 

(t) aZs0 is a ma2 function of t. 

From the fact that yh h (t) is real, it follows from 
Eq. (6.46) that j kyZ 

'h h j k,Z 
c-v> = y; h 

j kyZ 
(v) (6.50) 

where the asterisk denotes the complex conjugate. Hence, 
instead of Eq. (6.47), we also can write 

* I J hk' yz (v)T:.,,h 
J 

k,, ,ZCVjdV * 
-03 

(6.51) 

Moreover, since both quantities p-k(t)-r-k in Eq. (6.51) are 
real as can be seen from Eq. W+!h 8 and he fact that 

'hihk,z (u) is real, by taking the complex conjugate of both 

sides of Eq. (6.51) it follows that we also have the second 
alternative form 

I 

m 
= @ ,wq 

af * 1 -03 J hk, 9' (')'h.,,h 
J 

k,,,Z(v)dv, 
(6.52) 

where we have usedthe fact that the power spectral density 
@ 2(v) of {a:(t)-a;1 is real. 

"f 
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We see - e.g., from Eq. (6.51) - that the transformed 
system characterization yh h 

j k'Z 
(v) defined by Eq. (6.46) 

is the quantity required for computatLon of the expansion 
coefficients E 

o'c ‘(~j Tkf-cj ,k')(~j,,k,,-~j,,k,,)} - Inserting 

Eq. (6.41) into Eq. (6.46) and interchanging orders of 
integration yields 

f 

00 m 

'h h j kjZ 
(v> = @z(f) 

f 
Qh h (f,t)ei2Tutdtdf 

-co -co j k 

03 

= @,(f)Hj(f + ;)Hk(f - ; 
-co 

.)df 

where we have used Eq. (K.23), and Eq. (K.8) applied to 
Functions Hj(f) and Hk(f) in Eq. (6.54) are the Fourier . 

(6.53) 

(6.54) 

h.h 
J k' 

transforms of hj(t) and hk(t) as defined by Eq. (1.9) where 
individual interpretations of hj(t) and hk(t) are given in 
Table 2. 

According to Table 2, we require three forms of 

'hi hk, Z 
(v) which are yhh .(v), yhH ,(v), and yhh ,(v). 

J , 3 
We"can immediatelv write out the first of these three forms 
using Eq. (6.54) as 

?,,,,b) = 
f 

O" @,(f)H(f- ;)H* 
-00 

(f+ ;)df, (6.55) 

which we have discussed earlier - see Eq. (2.62). 

In order to put yhh .(v) and yhfi .(v) in the form of' Eq. 

WSO, we require the FAurier transf:rm of the time derivative 
of h(t). Let us denote this Fourier transform by placing a 
dot over H(f) - i.e., We define H(f) as 

f 

co 

h(f) 6 li(t>e -i27rftdt . (6.56) 
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The Fourier mate to Eq. (6.56) is 

I 

co 

h(t) = i(f)ei2Kftdf . 
-co 

Furthermore, the Fourier mate to Eq. (1.9) is 

I 

co 

h(t) = H(f)e12Tftdf . 

(6.57) 

(6.58) 
-co 

Differentiating both sides of Eq. (6.58) with respect to t 
gives 

f 

co 

Ii(t) = i2nfH(f)e i2nftdf ; 

-co 

hence, comparing Eqs. (6.57) and (6.59) yields 

(6.59) 

A(f) = i2nfH(f) , (6.60) 

which relates the Fourier transform 6 
Fourier transform H(f) of h(t). 

f) of h(t) to the 

Using Eqs. (6.54) and (6.60), we 
ffi~,,(v) as 

now can express 

(VI = J @,(f)(-i)2n(f+ :)H"(f+ F)(i)2r 
-co 

f- s)H(f- ;)df 

f 

co 
= 4.rr2 f2QZ(f)H(f- ;)H*(f+ ;)df 

-m 

f 

co 
- Tr2v2 @,(f)H(f- F)H*(f+ F)df . 

-03 
(6.61) 
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From Eq. (6.55), we see that the integral in the second term 
is ?hh,z(v); hence, yhh,z(V) can be expressed as 

yAliz(v) = 4r2 mf2@Z(f)H(f- $H*(f+ ;)df-n2v2yhh,z(V) , (6.62) f 
-M 

However, the autocorrelation function of the process {i(t)) 
whose sample functions are the time derivatives of z(t) is 
the negative of the second derivative of the autocorrelation 
function of {z(t)1 - i.e., -$"('I) [see, for example, p. 21 of 
Ref. 373. Furthermore, by differentiating twice with respect 
to T the relationship 

m $zw = f @z(f)ei2TfTdf 
-co 

(6.63) 

one finds 

I 

co 

@P(T) = - 4?T2f2@z(f)ei2TfTdf , (6.64) 
-co 

from which it follows that 4.rr2f2Qz(f> is the power spectral 
density of the process (i(t)). We therefore can express 
Th~,~(v) as 

Thfi,zw = y,,,,(v) - ~2v2yhh,zw (6.65) 

where we have defined 

f2QZ(f)H(f- $)H*(f+ ;)df . (6.66) 
-a3 

Finally, we consider yhh z(v). By combining Eqs. (6.54) 
and (6.60), we have in this cise 
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m I,,,, = f QZ(f)H*(f+ $)(i)2r(f- s)H(f- s)df 
-03 

f 

00 

= i27r fQZ(f)H(f- ;)H*(f+ ;)df 
-a3 

f 

ca 

- inv @,(f)H(f- ;)H*(f+ F)df . (6.67) 
-co 

However, from Eqs. (35a) and (35b) of Ref. 34, we see that 

[H(f- ;)H"(f+ $1 is necessarily an even function of f since 
@h(f,t) is an even function of f. Furthermore, Q,(f) also 
is an even function of f. Hence, we always have 

f 

co 

fQZ(f)H(f- $)H*(f+ ;)df = 0 (6.68) 
-00 

since the integrand in Eq. (6.68) is an odd function of f. 
Thus, combining Eq. (6.67) with Eqs. (6.55) and (6.68), we 
have 

?hh,z(v) = -irv?hh,z(v) , (6.69) 

which is the desired expression for yhl; ,(v) . 
3 

Summary. Equations (6.55), (6.65)-(6.66), and (6.69) 
provide expressions for yhh,z(v), 7;~ .(v), and yhl; z(w) as 
a function of the power spectral density Qz(f) of tie process 
{z(t)} of the turbulence model of Eqs. (1.2) through (1.4) 
and the complex frequency response function H(f), Eq. (1.9), 
of the relevant aircraft response variable. These expressions 
for yhh ,(v), yhh .(v), and y,h .(v) are to be combined with 
Eq. (6.51) to obt:in the varioui coefficients 
Eo.f'(~j,k'-~j,k')(~j,,k,,-~j,,k,,) by applying the rules in 
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Tables 1 and 2. By carrying out this procedure, we shall 
now show that the second to the last coefficient in the 
left-hand column of Table 1 is identically zero. 

According to Tables 1 and 2, we have from Eq. (6.51) 
for the second to the last coefficient in the left-hand 
column of Table 1: 

co - 
ED ~(0;-0;)(~~~-~,# = 

f f 
@a2WThh Z(v)~~~,z(v)dv 

f 9 

= ir 
J 

v@ p(v 
Of -co 

(6.70) 

where we have used Eq. (6.69) in going to the second line. 
The integral in the second line of the right-hand side of 
Eq. (6.70) is real; hence, the entire right-hand side is 
imaginary. However, the left-hand side of Eq. (6.70) is 
real. It follows that the integral in the second line of 
the right-hand side must be zero. This property also follows 
from the fact that the integrand in the second line of Eq. 
(6.70) is an odd function of v since @ 2(v) and IY~~,~(v)\' 

Of 
are both even functions of v. 
IT 

The even property of 
hh z(V)l 2 follows from Wiener's theorem and the fact 

that'yhh ,Z(t) is real. Equation (135) of Ref. 34 is a state- 
ment of Wiener's theorem, where we remind the reader that 
p,(-r> is an even function of r. We therefore have 

(6.71) 

The validity of Eq. (6.71) also could be argued on physical 
grounds from the fact that it is the coefficient in Eq. (6.30) 
of an odd function of the response variable y. 

Furthermore, we shall now show that 

(6.72) 
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as was stated earlier without proof by Eq. (6.13). From 
Eqs. (6.44) and (6.46), we have 

co 
iijk = a;. 'h h (t)dt = q 7, h (0) 

-00 j kyZ jk" ' (6.73) 

Hence, for j = 1 and k = 1, we have according to Table 2 and 
Eq. (6.73), 

where the right-hand equality follows from Eq. (6.69). 

(6.74) 

Final Expression For Aircraft Response Exceedance Rates 

Incorporating the result, Eq. (6.71) into Eq. (6.30), we 
obtain now our final expression for the mean rate of exceed- 
antes N+(y) of our aircraft response variable past the level 
Y: 

N+(Y) 

E i(a;-+'} 
Of 

8(d)’ 

)2) + EOf{($-<)(c$-~)} 
- 

0; 0; 

f higher order terms, (6.75) 

-61 



where the "higher order terms" are the same as those in 
Eq. (6.30), which arise from the higher order terms in 
Eq. (6.10). Neglect of these higher-order terms should 
not lead to substantial error provided that typica fluc- 
tuations in the modulating process af(t) are not larger 
than about one-third of the mean value of of(t). The 
turbulence model for which the result Eq. (6.75) applies 
is that of Eqs. (1.2) to (1.4), where here the "slow" com- 
ponent w,(t) is taken to be negligible in comparison with 
the "fast " component w,(t) = D,(t)z(t). 

To evaluate the parameters and coefficients in Eq. 
(6.751, we require 

I 
03 

FE 
Y 

-m 
Qwf(f)[H(f)12df 

and 

f 

co 
F= 

3 -co 
@wf(f)jfi(f)/2df 

f 

co 

= 4Tr2 f2@wt(f)lH(f)12df , 

(6.76) 

(6.774 

(6.77b) 

where @ 
Wf 

(f) is the power spectral density of the turbulence 

process {wf(t)I, H(f) is the complex frequency response of 
the aircraft response variable of interest as defined by 
Eq. (1.9>, and A(f) is the Fourier transform of the time 
derivative of the impulse response function of the aircraft 
response variable of interest. Equation (6.77a) is a direct 
T;n;;Tuence of Eq. (1.21), and Eq. (6.77b) follows from Eq. 

. . Furthermore, from Eq. (6.51) and Tables 1 and 2, 
we find that the coefficients in Eq. (6.75) can be expressed 
as 
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I - 

EDf{(o;-q)'} = /mm 2(v) I~,,,,b)/ 2dv 
"f -00 

and 

= 

(v> 1 2dv 

03 
@ 2(‘)& zb)?Ts 

Of 
(v)dv . 

3 
-m hh,z 

(6.78) 

(6.79) 

(6.80) 

(6.81) 

QD2(v) is the power spectral density of the process 
f 

hJ$(t )-T$l . Two methods for computing this spectrum are 
given on pp. 79-83 of Ref. 19. System characterizations 
(with respect to the process {z(t))) Yhh .(v), yhh .(v), 

and Yhh(v) are given by Eqs. (6.55), (6.;5)-(6.66): and 

(6.69) respectively. Oz(f) is the power spectral density 
of the process {z(t)} which can be taken as the normalized 

spectrum Owf(f)/ 
I 

co 
Qwf(f)df because of the locally stationary 

-03 

assumption Eq. (1.8a), and the normalization assumption, 
Eq. (1.4). 
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Limiting cases of the result given by Eq. (6.75) can 
be studied in a manner analogous to that used in Sees. 2.5 
and 2.6. It can be shown that the result given by Eq. 
(6.75) reduces to the appropriate result in Sec. 4.3 of 
Ref. 19 when fluctuations of of(t) are assumed to be 
negligible over the duration of the aircraft impulse 
response h(t). 
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APPENDIX A 

DERIVATION OF CORRECTION TERMS TO THE GAUSSIAN PROBABILITY 
DENSITY FUNCTION FOR USE IN EQUATION (2.12) 

Equation (2.9) expresses the correction terms in Eq. 
(2.12) as derivatives of the Gaussian density function: 

where 
-y2 

pco)(yl~,) = . 

Differentiating Eq. (A.l) with respect to 0; yields 

[ 

-y2 
p(l)(yl~f) = & (-$1 (0;) 

-3h 
e 

20; 

Tr 

= 
P(Y bf) y2 [ 1 -- 1 , 

202 
Y $ 

(A.11 

(A.2) 

(A.3) 

in agreement with Eq. (2.14a). In similar manner, we find 

P(2hY13f) = d(zZ) P(l)(Yla,) 
Y 

P(Y 1p Y4 w&+3 , 
I 

(A.41 
(cq2 uG 
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- - __. .___ _. 

and 

,(3) (yl?r,) = d P(*+YlQ) 
db;) 

= - 15 y4 
(cq2 

+ 45 2 - 15 

s I 9 
in agreement with Eqs. (2.15b) and (2.16b). 
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APPENDIX B 

DERIVATION OF EQUATION (2.23) 

Equation (2.23) is derived by substituting Eq. (2.20) 
into Eq. (2.lgc) and performing the resulting integration: 

v2 

hJ;q, 
Y-l 

P 

x e da2 . 
Y 

Let us define 

hence, 

. (B.3) 

(B.1) 

(B.2) 

Substituting Eqs. (B.2) and (B.3) into Eq. (B.l) yields 

P(Y) = 

-- 00 
e 

x g~-3/* .-< d< . 

Let us now define the normalized variable 

ypY . 
d- u; 

(B.4) 

03.5) 
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the probability density of Q is 

J 
Yn2 

1 03 -- 
PM = e 25 

m r(y)0 
<y-3/* .-< d(Q 

1 = 
* y1/2 InI y-l/* 

J*n/y NY) ( 1 

K 

JF y-1/2 W2ylrl[) 

=Jz7% - 
2y-1'2r(y) 

(J*Y[~~)~-~'* Ky-l,2 b'%b-~l) , 
(B.6) 

where Eq. (3.471.9) on p. 340 of Gradshteyn and Ryzhik [so] 
was used in going to the second line, and where Kn(*) is 
the modified Bessel function of the second kind of order n. 
Equation (B.6) is the same as Eq. (2.23) in the main text. 
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APPENDIX C 

CLOSED FORM EXPRESSIONS FOR K,(x) AND p,(q) IN 
TERMS OF ELEMENTARY FUNCTIONS 

From Eq. (4) on p. 108 of Relton [sll, we have the 
recursion relation 

K n+l(x) = 9 K,(x) + Kn$) 9 

whereas, from Eq. (8) on P. 109 of Ref. 47, we have 

K&(x) = K-&(x) = 2 2 

Combining Eqs. (C.l) and (C.2) gives 

Combining Eqs. (C.2) and (C.3) with Eq. (C.1) gives 

K,,2(x) = 1 + $ + J2- K&(x) . 
X 2 

cc.11 

(C.2) 

cc.31 

cc.41 

In like manner, combining each previous two values of Kn(x) 
with Eq. (C.l) yields, successively: 

K7,2(~) = 1 + ; + Jz + 2 
X X 

K9,2(x) = 1 + e + % + 

X2 

(C.5) 

Cc.61 

K 11,2(x)= 1 -I- % + y + y + y + 9'r5 K%(x) 
1 

(C.7) 
X5 

x K&d Cc.81 
2 
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K 
15/2 

(x ) = 1 + 28 + - 378 + - 3150 + 17325 + 62370 
X 

x2 x3 X4 X5 

+ 135135 + l35l35 
X6 

K 17,2(x) = 
( 

1 + g + 9 + Ly + 51975 + *71;70 
X4 

+ 9’15945 + 2027025 + 2027025 K (x> 

X6 X7 X8 % 

cc.91 

(C.10) 

K 1g,2 (x) = 1 + T + y! + ly360 + "it" + g4z;45 

i 

+ 4729725 + 16*16*00 + 34459425 + 34459425 K (x> 
, 

X6 X7 X3 X9 
‘/2 

(C.11) 

where K%(x) is given in terms of elementary functions by Eq. 
(C.2). 

Combining Eqs. (C.2), (C.3), (C.5), (C.g>, and (C.lO), 
successively, with Eq. (2.23), we obtain the following ex- 
pressions for py(n) defined by Eq. (2.23):' 

P$l) = 1 e-fiId (C.12) 
42 

p,(n) = -$ (2/4+1) e 4-d (C.13) 
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p,(q) = 1 (x3 + 6x2 + 15x + 15) e-’ , 
27/2x3 

where x = w-d (C.14) 

P&-I) = & (x7 + 28x6 + 378x5 + 3150x4 

+ 17325x3 + 62370x2 + 135135x + 135135) emx , 

where x = JiqnI (c.15) 

P&I> = 3 
2’7/28! 

(x8 + 36x7 + 630x6 + 6930x5 

+ 51975x4 + 270270x3 i- 945945x2 

+ 2027025x + 2027025) emx , 

where x = JiTjqI and 8! = 40320. (c.16) 
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APPENDIX D 

ALTERNATIVE SERIES REPRESENTATION OF EXPANSION 

COEFFICIENT OF THE NONGAUSSIAN TERM 

Writing v for f in Eq. (2.58), we may express the co- 
efficient p(g) in Eq (2 24) as . . 

OY 

IT h,zh)12 dv . 
Let us define 

J cn yh z(<) Y,,z(c+t) dt , 3 

(D.1) 

CD.21 

which is the "autocorrelation function" of‘the deterministic 
system characterization yh ,(t) defined by Eq. (2.54). Then, 
from Wiener's theorem - e-i., p. 54 of Ref. 34 - it follows 
that 

4,(t) = J O3 IT h,z(v)12 ei2’rrvt dv . CD.31 

Furthermore, from Eqs. (2.81), and (D.31, it follows by 
applying the generalized form of Parseval's theorem to Eq. 
(D.l) that we may express u(z) as 

OY 

$$I = J O” 
*y -00 $ G (t> G,(t) dt 

J 
co = 2 $ 2(t) $,(t) dt , 

0 
Of 

CD.41 
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II - 

where the second line follows from the fact that @ 2(t) and 
Q,(t) both are necessarily even functions of t. "f 

Let us now consider situations where of(t) fluctuates 
little over durations comparable with the duration of the 
aircraft impulse response h(t). In these situations, the 
nominal correlation time of a:(t) is large in comparison 
with that of Yh .(t> - as is illustrated in Fig. D.l. Ex- 
amination of Fi&. D.l suggests that we represent 4 2(t) by a 
low-order polynomial over the range O<T<T 

Of 
-- where Ty is the 

time interval over which Q,(t) is not negligible for t>O: 

@,%(t) = F bjtJ , O<t<T -- 
j=O Y ' CD.51 

where the bj may be interpreted as the one-sided Maclaurin 
expansion coefficients of a02(t), 

f 

&)(0+) 
b = Of 

j 3 
j! 

(D.6) 

where @(J)(O+) denotes the jth "right-hand" 
Of 

derivative of 

@a2(t) evaluated at the origin. Substitution of Eq. (D.5) 

intfo Eq. (D.4) yields the desired series representation of 
#: 

OY 

CD.71 

Using Eq. (D.6), we see that the first term in the ex- 
pansion, Eq. (D.7), is 
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FIG. D.l. BEHAVIOR OF $I 2(t) AND G,(t) NEAR t = 0 FOR CASE 
*f 

WHERE VARIATION IN a;(t) IS SMALL OV‘ER DURATION 
OF h(t). 
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J 
00 

2 bo @Y (t 
) dt = 

J 
Q,(t) dt 

0 

c+p) 
-co 

= Qo2(0) 
f [I co yh .(t) dt 2 3 -03 1 

= p $0) 2 a;, h,z ( 1 2 CD.81 

where the second line was obtained using Eq. (D.2), and the 
third line was obtained using Eqs. (2.87) and (2.92). Com- 
paring Eqs. (2.96) and (D.8), we see that the first terms in 
the series of Eqs. (2.96) and (D.7) are the same. However, 
the remaining terms differ because of the presence of odd 
powers of j in Eq. (D.7). 

Although the first correction term to the term repre- 
sented by Eq. (D.8) in the series of Eq. (2.85) had a very 
satisfying interpretation as we showed in Eq. (2.99), the 
series, Eq. (D.7), generally will be better behaved in 
practice because it utilizes the "one-sided" expansion of 
co;(t) shown in Eqs. (D.5) and (D.6) which does not require 

that 6 2(t) be continuous at the origin. 
Of 

Thus, the existence 

ofE - 
1( 11 

da; 2 
dt is not required by the expansion of Eq. (D.7), 

whereas, it is required in the expansion of Eq. (2.85) - 
see Eq. (2.93). 

Finally, we note that the "one-sided moments" of @,(t) 
in Eq. (D.7) can be evaluated from the derivatives of the 
unilateral Laplace transform of @,(t) if that transform 
can be evaluated in closed form. Also notice that the 
characterization of Q 2(t) used in Eq. (D.5) is its one-sided 

Of 
power series expansion indicated at the very end of Sec. 1. 
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(E.2b) =a n - ibn , 

where a n and bn are real. Consider 

c c* = nm (a ,-ib,) (a,+ib,) 

= (anam+bnbm) + i(a,b,-a,b,) (E.3) 

and 

CnCm = (anam-b,b,) - i(a,b,+a,b,) . (E.4) 

Taking the expected values of Eqs. (E.3) and (E.4), we find 
that if 

E{cnc;) = 0 and E{c,c-1 = 0 , (E.5) 

then we must have 

E{a,a,) = -E Cbnbm )=E I = 0 (E.6) 

APPENDIX E 

PROOF THAT REAL AND IMAGINARY PARTS OF FOURIER SERIES 

COEFFICIENTS OF A PERIODIC RANDOM PROCESS ARE 

UNCORRELATED FOR mfn, WHERE m,nlO 

In Eq. (3.51, we have expressed the complex Fourier 
series coefficients of a periodic random process 

w(t+pT) = w(t) , p=o,+1,+2 , . . . (E.1) 

by 

1 T/2 
c! n =T J w(t) e -i2nnt/T dt 

-T/2 

(E.2a) 

and 
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E{anbm) = E{a,b,) = -E{ambn} q 0 . (E.7) 

Satisfaction of the two conditions in Eq. -(E.5) therefore 
guarantees that all pairs of the real and imaginary parts of 
the complex coefficients Cn are uncorrelated. Cf. Davenport 
and Root [39], pp. 91,92. 

From Eq. (E.2a), we have 

Eknc;) = 1 
T/2 J J T/2 

T2 
E{w(t,) w(t,)) e 

-i2T(nt,-mtz)/T 
dt,dt, 

-T/2 -T/2 

1 T/2 T/2 
=- 

T2 J J @,(t,-t,) e 
-i2n(nt,-mt,)/T 

dt,dt, . 
-T/2 -T/2 

(E.8) 

If, in the inner integral, we transform t, to 'c using 

T = t, - t, ; (E.9) 

hence, t 2 =-r+t l,we have 

-i2n(nt,-mt,)/T -i2n(n-m)t,/T i2nm-r/T 
e = e e . 2 (E.lO) 
therefore, 

E{cnc;) = L J T/2 .-i2m(n-m)t,/T 
T2 J T/2-t, aw( i2nmT/T dTdt 

1 

-T/2 -T/2-t, 

1 T/2 -i2r(n-m)t,/T 
=T J e dtl 

-T/2 

1 J T/2 

"CF GwW e 
i2nm-r/T d-r , 

-T/2 
(E.ll) 
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where the second line is a consequence of the fact that the 
autocorrelation function Qw(~) of a periodic random process 
is itself periodic with the same period T - i.e., Davenport 
and Root [39], p. 91 - and the fact that the inner integral 
in the first line in Eq. (E.ll) is independent of tl, since 
its integrand is periodic with period T. Furthermore, for 
m # n, the first integral in Eq. (E.ll) is identically zero; 
hence, 

Eknc;) = 0 , mfn , (E.12) 

which is the first of our two conditions in Eq. (E.5). 

To check the second condition, we note from Eq. (E.2a) 
that Cm = cnm, and hence, from Eq. (E.ll), we have 

E{cncm~ = Etc,c",} 

1 T/2 

J 
-i2r(n+m)t,/T 

=T e dtl 
-T/2 

1 T/2 
x - T J @w(~) e -i2nmT/T d-r . 

-T/2 

Consequently, 

(E.13) 

E{cncm) = 0 , mf-n . (E.14) 

It follows that Eqs. (E.6) and (E.7) are satisfied for all 
m,n>O, provided m # n, which is what we sought to prove. - 

As pointed out in the main text, when w(t) is generated 
from a stationary Gaussian process, the entire set of 
variates a,,b, is jointly Gaussian since Eq. (E.2a) is a 
linear transformation of w(t). Hence, provided m f n, for 
all m,n>O, all anIs and b, 's are statistically independent. 
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APPENDIX F 

METHOD FOR SOLUTION OF EQUATION (3.26) FOR 

INTEGRAL SCALE OF von KARMAN TURBULENCE 

The likelihood equation for the integral scale of tur- 
bulence with negligible low frequency component w,(t) is 
given by Eq. (3.26): 

Y 
i=l 

(F.1) 

where we have reversed the roles of i and j in comparison with 
Eq. (3.26). Following the notation of Eq. (3.30), we define 

G i (L) 4 ?- RnF dL (L) i * (F.2) 

Let us now substitute Eq. (F.2) into Eq. (F.l) and define 
after minor rearrangement 

E(L) o= $ 1 - si i=l Fi(L) 
CF.31 

Then, according to Eq. (F.31, the value of L that satisfies 
Eq. (F.l) is the value for which E(L) i 0. 

To illustrate a method for obtaining the solution 
E(L) = 0 of Eq. (F.3), we consider a vertical turbulence 
velocity record that is assumed to obey the von Karman 
(transverse) power spectral form. From Eqs. (3.34) and (3.35) 
we have for the von Karman transverse spectrum: 

F..(L) q 
l+188.75L2k; 

(F.4) 
r1+70.78L2k;111/6 

and 
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Gi(L) - i 
l17.g7L2k;(l-188.75L2kl) 

(1+70.78L2k;)(l+188.75L2k;) . 
(F.5) 

The solution E(L) = 0 of Eq. (F.3) is most easily obtained 
by trial and error. In carrying out the solution for the 
vertical record under consideration, we used a value for the 
uppermost wavenumber corresponding to j = N in Eq. (F.3) of 
kN = 3.0 X 1o-2 cycles/meter which yielded a value of N = 6326 
points in the summation in Eq. (F.3). 

The actual value of L = 309.4 m was obtained as follows. 
First, a trial value of L = 305 m (1000 ft) was chosen. The 
value of E(L) for this trial value of L was then computed and 
stored using Eq. (F.3). Since the value of E(L) obtained was 
negative, a second (larger) trial value of L was chosen which 
was 335.5 meters (1100 ft). Using Eq. (F.3), a new value of 
E(L) was computed and stored using this second choice of L. 
We then possessed two values of E(L) corresponding to the two 
trial values of L. Linear interpolation then was used to esti- 
mate a new (3rd) value of L corresponding to the value of 
E(L) = 0. For this third value of L, the true value of E(L) 
was then computed using Eq. (F.3). The resulting value of 
E(L) had a positive sign; hence, a new (fourth) trial value 
of L was chosen which was 3.05 m (10 ft) smaller than the 
third trial value of L. The value of E(L) corresponding to 
this fourth trial value of L was then computed and stored 
using Eq. (F.3). Finally, from the third and fourth trial 
values of L and the corresponding values of E(L), a fifth 
value of L was computed by linear interpolation corresponding 
to the value E(L) = 0. This fifth value of L = 309.4 m was 
used as the solution to the likelihood equation (F.l). These 
five values of L and the corresponding values of E(L) are 
plotted in Fig. F.l, which shows the local very nearly linear 
behavior of E(L) as a function of L. 

180 



! 

. 
v 

r” 

.005 I I I I 

.004 

.003 
ENCIRCLED NUMBERS DESIGNATE 
TRIAL VALUES OF L-THE FINAL 

.002 (FIFTHIVALUE OF L IS 309.4 m 

E (L’ .OOl 

- i/ 0 
0 

/ 
0 

-.OOl 0 
@ 

-002 

-.003 I I I I I I I I 
305 310 315 320 325 330 335 340 345 350 

L(meters) 

FIG. F.l. TRIAL AND ERROR SOLUTION FOR INTEGRAL SCALE L. 



APPENDIX G 

TRADE-OFFS BETWEEN CHOICES OF 5, AND m 

Here, we describe considerations to be taken into account 
in choosing values of <H and m in the constrained least- 
squares estimation procedure described in Sec. 4. Upper 
limit <H in Eq. (4.5)determines the interval 0 < 5 < <H over 
which the parameters 0' L, and a,, to a, 
tion function model offiq. 

in the autocorrela- 
(4.1) are obtained by minimization 

of the integral squared error E in the constrained least- 
squares fit procedure. The parameter m is the degree of the 
polynomial in Eq. (4.1) that is used to represent the auto- 
correlation function of the low-frequency turbulence component 
w,(t) over the interval 0 < 5 5 5,.- - 

Intelligent choices for values of CH and m to be used in 
the minimization procedure are not generally independent. One 
reason for this lack of independence is the fact that our 
representation in Eqs. (4.1) and (4.5) of the von Karman 
component $ K @ (<;L) of the autocorrelation function is not 
orthogonal with our representation of the low-frequency com- 

ponent y aiEi of the autocorrelation function over the 
i=O 

interVal 0 5 < 5 <H. Thus, the low-frequency component auto- 

correlation function representation y a.S. 
i=O ' ' 

has the potential 

for representing a portion of the van. Karman component of 
the empirical autocorrelation function R(S) in Eq. (4.5) in 
the integral squares sense. However, if for given values of 

m 
<H and m, 1 aiEi can represent, exactly, the low-frequency 

i=O 
component R(t) over 0 < 5 < CH, and if the "fast" component 
of R(t) has exactly the appropriate von Karman form for some 
values of L and G, then this lack of orthogonality between 

a:@,(E;L) and 1 aiSi will not be a problem. Thus, our goaZ 
i=O m 

should be to choose values of 5~ and m so that 1 ai5i can 
i=O 

do a good job of representing the low-frequency component of 
the empirical autocorrelation function R(t), while simuZtaneousZy 

attempting to minimize the capability of y aiSi to represent 
i=O 

the von Karman component of R(E). 
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To aid in implementing the above italicized rule, let us 

now consider the capability of i a.ci t 
i=O ' 

o represent the 

von Karman component a2$K(c;L) of the autocorrelation function 
over the interval 0 5 5 5 CH' Thus, for both the von Karman 
transverse and longitudinal autocorrelation functions $K(S;L), 
we determine the set of coefficients ai, i = O,l,**=,m that 
minimize the integral-square "error" 

(G.1) 

To find the ai that minimize E, we differentiate Eq. (G.l) with 
respect to aj, j = O,l,=*=,m which yields 

((3.2) 

The solution to the set of equations (aE/aa.) = 0, j = O,l,***,m 
determines the set of aj 'chat minimize E. h rom Eq. (G.2), this 
set of equations can be written as 

o2 I 
CH * 

cJ(bK(t;L)dE - y aijSHci+j d< = 0, j = O,l,*=*,m (G. 3) 
0 i=O 0 

or 

m SHi+jtl c a. = o2 I 
EH - 

i=O i+j+l 1 <J$K(E;L)dE, j = O,L*-m,m, (G.4) 
0 

which is a set of m+l linear simultaneous algebraic equations 
for the ai, i =O,l,=** m in terms of SH and von Karman auto- 

Correlation function o*@K(<;L). These ai minimize E. 

To write these equations in normalized form, let us define, 
as before, 
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-+f 
L' (G.5a,b) 

and 

as in Eqs. (4.18) and (4.20). Using Eqs. (G.5) and (G.6), 
we have, after dividing Eq. (G.4) by 02Ljf1, 

m rHi+j+l Liai 
c 

5;r. - = 
i=O i+j+l 02 I 

rjTK(i)dz, j = O,l,***,m, ((3.7) 
0 

which is a set of equations for the normalized coefficients 
Liai/a2. For a given value of m, the normalized solutions to 
these equations depend on Only one dimensionless parameter FH. 
Thus, for either the von Karman transverse or longitudinal 
autocorrelation functions, we can solve the set of equations 
(G.7) for Liai/02, i = O,l,*a* 
H 

,m for any family of choices of 
= sH/L and m. 

We shall find it convenient to have an explicit formula 
for the least integral-square "error" E in terms of the nor- 
malized solution vector L1ai/a2, i = O,l,***,m to the set 
of equations (G.7). Squaring the integrand in Eq. (G.l) and 
rearranging terms, we have 

SH 2 

E = o4 Q;(S;L)dE -20~ + dS, 
0 i=O 0 

(G.8) 

or dividing by a4L and introducing the notation of Eq. (G.6), 
we have 
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E EH- -- = 
m Liai r<H si 

a2L '0 
$;(S/L)db'L - 2 1 - 

J i=O 0' o 
7 ~K(E/L)dS/L 
L1 

5;1- - - = $;(S)dt -2 
0 

+ 
m Liai -i 
c -5 d , 

i=O 0' 
(G.9) 

where we have introduced the notation of Eq. (G.5a) and (G.5b). 
However, expanding the last term in Eq. (G.9) yields 

dr= y 
i=O j=O o2 o2 

0 

r i+j+l 
= T i L1ai LJaj b;+j+l _ 

i=O j=O o2 oz 

EH-*- - - 
5'9,(5)d< 

(G.lO) 
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where the second to the last line follows from Eq. (G.7); 
therefore the last two lines ar: valid only for the dimen- 
sionless solution vector Llai/a , i =O,l,**=,m that minimizes 
E. Substitution of Eq. (G.lO) into Eq. (G.9) yields 

(G.ll) 

which is valid onlv for the set of dimensionless coefficients 
Liai/a2, i = 0,1,-L& -rn that is the solution to 
i.eT, the set that minimizes E. 

If al2 a; 5 0, we have from Eq. (G.l), 

where the right-hand 
Hence, let us define 

equality follows from-Eqs 
a normalized "error" E as 

. 

Furthermore, let us define a normalized set of 

a Liai 
a =- 

i cs2 - 

Using this latter definition, 
the ai 's can be written as 

fH 
i+j+l 

i+j+l 

Eq. (G.7) - 

(G-12) 

(G.5) and (G.6). 

(G.13) 

coefficients by 

(G.14) 

our set 

(c)dr’, j 

of equations (G-7) 

= O,l,**e,m , 

for 

(G.15) 
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whereas dividing Eq. (G.ll) by 
I 

$-J- - - 
$i(<)dc and using the 

definitions of Eqs. (G.13) and qG.14) 
normalized "error" F becomes 

, our equation for the 

(~26) 
<He-, _ - 

@,(S)dS 
0 

For either the von Karman transverse or longitudinal 
autocorrelation functions TK(F), Eqs. (G.15) and (G.16) 
determine the normalized "error" E in the least-squares best 

fit of to the von Karman autocorrelation function 

$K(f). This value of r is dependent on choices of H and m. 
Figures G.l and G.3 show this dependence of E on CH and m for 
the von Karman transverse autocorrelation function, and 
Figs. G.2 and G.4 show the same dependence for the von Karman 
longitudinal autocorrelation function. According to our above 
itaZicized statement, large values of F are desirabze. There- 
fore, for several representations 

,“<t~t, ((3.17) - 

of an empirica autocorreZation function R(S), a21 having 
approximateZy the same eapabiZity for representing the Zow- 
frequency component of R(S), but differing in values of & 
and m, the representation with the pair of values <H = L<H 
and m yieZding the Zargest va2v.e of E as determined by 
Figs. G.1 to G.4 should yieZd the most reZiabZe vaZue of L. 

This rule of thumb suggests the following procedure for 
estimating autocorrelation parameters by the methodology of 
Sec. 4. 
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1. Compute the empirical autocorrelation function R(E) - 
e.g., by the method outlined in Reference 18. 

2. By visual inspection, choose the largest Value of <H 

for which y aiEi can be expected to provide a good 

representaiizn of the low-frequency component of R(t) 
for each of several values of m, say m = l,2,3, and 4. 
A different value of CR will generally be chosen for 
each different value of m. 

3. For each pair of values of CR and m, compute L, cI~, 
a a ..-,a, 
t% 

by the method described in Sec. 4. 
?!Gsulting representation, Eq. 

Plot 
G.17, against R(E) 

to insure adequacy of the fit for each such computation. 

4. For each such fit - i.e., for each pair of values of 
<R and m - determine the value of r from Figs. G.l or 
G.3, or from Figs. G.2 or G.4, as appropriate for the 
von Karman transverse or longitudinal cases. 

5. The most reliable fit, i.e., the most reliable value 
of L, should be that corresponding to the Zargest 
value of E. Values of <H = L<R and m yielding values 
of r less than, say,. 0.5 may be particularly unreliable 

because in this range i aiEi has too much capability 
i=O 

for representing a portion of the von Karman component 
of the empirical autocorrelation function R(S). 
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APPENDIX H 

METHOD OF APPROXIMATION OF THE INTEGRAL SCALE AND 

POWER SPECTRUM OF THE "SLOW" TURBULENCE COMPONENT w,(t) 

Extrapolation of autocorreZation function mode2. Here, 
we develop a simple method of extrapolating the autocorrelation 
function approximation $ws (5) of the slow turbulence component 
w,(t) given by Eq. (4.2), 

where the extrapolation completes the description of $w 
S 

(H.la) 

(H.lb) 

(5) 

over the entire interval 0 < 5 < ~0. We then integrate the 
resulting autocorrelation model-to yield an approximation to 
the integral scale of the slow component ws(t>; we then 
Fourier transform the resulting model to yield an analytical 
approximation to the power spectrum of the resulting model. 

The extrapolation is carried out using the simple expo- 
nential decay model 

E,L5(- (H.2) 

which completes the range of 5 not covered by the model of 
Eq. (H.l). Parameters A and c1 in Eq. (H.2) are set by requiring 
fw (c> and its first derivative to be continuous at the point 

S 

Of intersection 5 = <H Of the tW0 models. Using this method, 
the values a,,,al,***,am, and 5 compZeteZy describe the auto- 
correlation model of Eqs. (H.17 and (H.2). 
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Differentiating Eq. (H.l) gives 

Therefore, we have 

fh (5,) = T jajSAel 
S j=l 9 

(H.3) 

(H.4) 

where the prime denotes differentiation. Differentiating Eq. 
(H.2) gives 

a$ (5) = -aAe-"'H, 
S 

hence, we also have 

-a< 

9,: (5,) = -cxAe H . 
S 

Dividing Eq. (H.5) by Eq. (H.2) gives 

(H.5) 

(H.6) 

(H.7) 

Hence, if tw (5) is continuous at < = <,, continuity of 9; (5) 
S S 

at < = <H requires from Eqs. (H.l), (H.3), and (H.7) that 
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- 

ly, = - 

i 
j=l 

jajE$-l 

J!oaj4 . 

, (H.8) 

which is an equation for a in terms of the parameters of the 
model of Eq. (H.l). To obtain an equation for A, we note from 
Eq. (H.2) that we must have 

USH 
A=e fw ('H) 

S 
(H.9) 

06 

A = ea5 m H la.<:, j=o J (H.lO) 

where Eq. (H.lO) follows from the continuity requirement of 
9, (5) at 5 = 5, and Eq. (H.1). Equations (H.8) and (H.lO) 

yizld cx and A from the parameters of the model, Eq. (H.l). 

Expression for integra2 scaZe of slow component. To 
obtain an equation for the integral scale of the slow com- 

ponent, we require the integral 
and (H.2), we have I 

co 

fw (S)dE. From Eqs. (H.l) 
0 S 

$ +1 

i a H a -"'H . 

= j=O j j+l +Ae (H.ll) 

195 

- 



The integral scale L is defined as 

co $,(5)dS. (H.12) 

From Eq. (H.ll), we see that an expression for A/a is required, 
which from Eqs. (H.8) and (H.lO) is 

e 
A -= - 

c15H jIoajE: ’ 
( 1 

a 
i 

j=l 
jaj<i-' - 

(H.13) 

Furthermore, from Eq. (H.l), we see that ew (0) = a,. Hence, 
S 

applying the definition Eq. (H.12) to tw (<), we see from 
S 

Eqs. (H.ll) and (H.13) that 

I 
(H.14) 

which is an expression for the integral scale Lw of the slow 
S 

turbulence component ws(t) in terms of the autocorrelation 
function parameters computed by the method described in Sec. 4. 

Expression for power spectra2 density of SZOW component. 
By forming the Fourier transform of the above extrapolated 
autocorrelation function model, we obtain an expression for 
the power spectral density of the slow component of turbulence: 

Qw (k) =n '=' 
J 

2, (5hd2~kS)dS 
S S -co 

co 

= 2 tw (Shos(2IN)dL 
0 S 
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Introducing Eqs. (H.l) and (H.2) into Eq. (H.15) and carrying 
out the integration, we have 

CH . aw (k) = 2 y a.1 <Jcos(2nkS)dS+2A,/m e-"'cos(2rkS)dS. (~.16) 
S j=o J 

0 
5, 

Using formula 2.633-z on p. 184 of Ref. 50 for the first of 
the above two integrals and a result in the well known 
Burington tables for the second integral, we obtain 

Qw (k) = 2 1 
S 

fjmoaj [Ljog! (i) !,ziI+l sin(2nktH + $ Rn) 

1 
(2nk)j+' 

sin 

1 [27rksin(2rk<H)-ncos(2nk<Hj, 
I . 

However, 

= R! (j-;;!e! = j ! 
(j 

and 

j!; =j!. 
0 

(H.17) 

(~1.18) 

(H.19) 

Furthermore, for any sum, we have 
m . 
c f =y T 

j=O R=O x=0 j=R ' 
(H.20) 

Incorporating Eqs. (H.18) through (H.20) into Eq. (H.17) and 
slightly rearranging the result yields the desired expression 
for ow (k): 

S 
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Qw (k) = 2 
S 

sin(2rcHk + i RIT) 

(2n<Hk)R+1 

-2 1 
2P.e 

-5, 
[2nksin(2n<Hk)-acos(2n<Hk)] , (H.21) 

a2+(2nk)2 

where expressions for c1 and A are given by Eqs. (H.8) and (H.lO). 
Equation (H.21) is a closed form expression for the power 
spectral density of the slow turbulence component w,(t) in 
terms of the autocorrelation function parameters determined 
by the method described in Sec. 4. 
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APPENDIX I 

EVALUATION OF AN INTEGRAL 

We evaluate below the integral defined by Eq (5.84): 

(1.1) 

To evaluate y(3) we shall use the method described on 
pp. 584 to 587 of Ref: 52. Equation (1.1) is of the form of 
Eq. (119) on p. 584 of Ref. 52: 

(I.21 

where the points ak are the poles of the integrand that are 
located in the upper half plane. The poles of the integrand 
occur at the zeros of the denominator of Eq. (I.l), which are 
solutions to the equations 

(l+b52)2 = 0 (1+cE2)2 = 0 . (1.3a,b) 

These solutions are, respectively, 

'k - = +iCi76 'k - = +iJl/c . (I.ba,b) 

Therefore, the denominator of the integrand in Eq. (1.1) can be 
expressed as 

(1+b~2)2(l+c~2)2 = b2c2 (' + g)2(E - k)2(E + g2(5 - 2)' - 

(I.51 

The four factors in the rightlhand side of Eq. (1.5) give rise 
to poles located at Sk = -i//b, Sk = +i/Jb, ck = -i/G, 
Sk = +i/dc reSpeCtiVelya All four of these poles are of order 
two. Thus, there are two poles in the upper half plane whic_h 
are located on the imaginary axis at 5, = i/6 and 5, = i//c 
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From p. 520 of Ref. 52, 
we require the residues 

we see that for a pole of order m, 

(z-zj)mf(z) 3 z=z. 
J 

where for our application m = 2 and 

f(z) = [1+(2b+c)z2]2 

b2c2(z2 + +)2(z2 + ;)2 

Thus, we have 

(z-z,)2f(z) = cl+(2b+c)z2J2 

b2c2(z + g)2(z2 + ;)2 

and 

(z-z2)Zf (z) = [1+(2b+c)z212 

b2c2(z2 + ;)'(z + -$' ' 

(1.6) 

(I.71 

(I.81 

(1.9) 

Differentiating Eqs. (1.8) and (1.9>, as required by Eq. (1.6), . 
and evaluating the resulting expressions at z = z1 = 1 and 

z = z2 = A respectively, 
Jb 

JC 
we have after simplication 

Res(z,) = -i (b+c>(7b2+c2) 
4b2 

(1.10) 

and 
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I -- 

Res(z2) = i b(b2+bc+2c2) 

C2 
(1.11) 

Therefore, from Eqs. (1.1) and (1.2), it follows that 

y(3) = a 2 
0 

b ri[Res(z,)+Res(z2)] 

7-r 
= (c-b>3 

(b+c)(7b2+c2) _ b(b2+b;+2c2) 
Qb% (1.12) 

C2 

which is the result given by Eq. (5.85) in the main text of the 
report. 



APPENDIX 3 

EVALUATION OF SECOND ORDER PARTIAL DERIVATIVES OF JOINT 

GAUSSIAN PROBABILITY DENSITY WITH RESPECT TO ITS PARAMETERS 

The joint Gaussian probability density of Eq. (6.4) can 
be expressed as 

P(Y,91a2 y'05,1Jyji) z P = & eB 

where 

and 

AN -a?y2+2u 

B=2A= 

p-02g2 
9 

2(020?-&) 
YY YY 

(J-1) 

(J.2) 

(5.3) 

where 

N 1 -a5y2+2v (J.4) 

Denoting derivatives by superscripts in parentheses, we have 
by differentiating Eq. (J.l), 

and 

A(2) &A(')) 2 - - 
2 -+A 

4A I + B(2)+(B (1))2 . 
i 

(J.5) 

(J.6) 
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I -- 

By differentiating the left-hand portion of Eq. (J.3), we 
have 

A(l) --- 
A 

and 

(5.7) 

(J.8) 

Finally, combining Eqs. (J.7) and Eq. (J.8) with Eq. (J.6), 
we obtain an expression for the second derivative of 
P(Y>g1c2,c2,U .> in terms of the derivatives of A and N taken 
with rezpe!zt $g the same variable: 

p(2) = p 2 _ A(2)A+AN(2)-3A(1)N(1) 

2A2 

3(A(1)) 2 _ A(2) N + (N(l)) 2 1 A(l) A 2 -A N(l)N + _(A(l)j2 N2{, I . 
2A2 

(J.9) 

Equation (J.9) is a general expression that can be used to 
evaluate p (2,0,0) , p(w,o) and p(“,o,2) for use in Eq. (6.10) 
by differentiating A and N iith respect to the appropriate 
variables ay, cm, or '~~9 

3 
as indicated by the superscript 

notation define by Eq. (6.11). A and N are defined by Eqs. 
(J.2) and (J-4). 

Let us turn now to evaluation of the cross-partial deriva- 
tives required for the last three terms in Eq. (6.10). These 

terms are P(~'~"), P(~"'~) and P("~'~). In this case 
we shall use a double superscript notation to denote parti: 
derivatives with respect to whatever two variables are required 
to evaluate these terms. 

203 



We can immediately write from Eq. (J.5) 

p&O) A&O) 
=P Bcl,') _ 2A (J.10) 

and differentiating this expression with respect to the second 
variable, we find 

p(l,l) A(',l) _ 3A(1'o)~(o'1) 
2 4A 

+ B(l,o)*(O,1)+B(l,l) 

i 
. 

From Eq. (J.7), we can immediately write 

B 

and 

B 

N&O) A(1,o) 
N - A 

0,l) N ( N(o,l) A(o,l) 
= 2A N - A 

(J.ll) 

(J.12) 

(J.13) 

Differentiating Eq. (J.12) with respect to the second variable 

gives us B al): 

N(l,l) _ A (l,“)N(o,l) A(o,l)N(l,o) A _ 
A 

+ 2A 
(l,O),(O,l)N A(‘dN 

A2 I 
A . (J.14) 
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Finally, substituting Eqs. (5.12) tTl(Jljlil) into Eq. (J-11) 
yields the desired expression for p ' : 

a(l,l) 1 A(l,O)A(O,l)_A(l,l),.ANo _ 2 A(O,l)N(l,O) 
2A2 ' ( 

&O)N(O,l) + 3A(1'o)A(o'1) 
A 

_ A(',') I NN 
(l,o)N(o,l) 

2 

/n -I\ 
A (1,o) _ '"'L' N(l,o)~ _ A 2A 

2A 
N(O,l)N + A(lyo)A(oyl) N2 

2A2 

z 

(J.15) 

Equation (J.15) is a general expression that can be used to 
evaluate P(~'~"), P(~"'~) and p(oyl,l) for use in Eq. 
(6.10). In evaluating the Various terms in Eq. (J.l5), the 
double superscript notation is used to denote derivatives with 
respect to whatever two variables in p (l,l,O) , po,o,l) , and 
p(o,l,l) the partial derivatives are taken with respect to. 
A and N are defined by Eqs. (J.2) and (J-4). 

As a check of Eqs. (J-9) and (J.l5), we note that the 
expression for p Cl,11 should reduce to the expression for p (2) 

when we substitute the right-hand sides of the following 
expressions into Eq. (5.15): A(l,‘) = A(l), A(‘$l) = A(l), 
A(‘,‘) = AC21 N&O) = N(l) N(od = N(~) ~(l,l) = ~(~1 

Carrying out these substitutions reduces Eq: (J.15) to Eq. '(J.9). 

We shall now use Eq. (5.9) to evaluate the terms p (2,0,0) 3 
P("~"), and P(""~) for use in Eq. (6 10) . , and following 
that we shall use Eq. (J.15) to evaluate P(~~~~'), p(13031), 
and p(",l,l) . 

To evaluate p (230Jqy,yp 0;) we identify all 
derivatives in Eq. (J.9) as d er!catives with respect to u2 

uyjr) 2 

[as indicated by Eq. (6.11)]. Therefore, from Eqs. (J.2) Y 

and (5.4) we have for evaZuation of p FLyg: 
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A(1) = a?, Ac2) = 0 (5.16) 
Y 

N(l) = +2, Nc2) = 0 . (J.17) 

When Eqs. (J.l) to (J.4) and Eqs. (5.16) and (J.17) are sub- 
stituted into Eq. (J.9) we obtain the desired expression for 

P(2,0,0)(Y,z++ 05, !Q. 

In like manner, we have developed the following table 
of flcl), Ac2), N(l), and Nc2) -2 which gives the evaluates 

required for use in Eq. ( 
,&O,O), pm,2,0 > , and P 

J .9> to obtain expressions for 
o,o,a . ( 
I 

1 

Am 

p(2,0,0) .02 

9 

p(o,2,0) 
s 

p(o,o,2) 
-21-1 Y3i 

AC21 

0 

0 

-2 

N(l) 
-9’ 

-Y2 

2YY 

(2) N 

0 

0 

0 

Table J.l. Evaluates of A (1) A(2) Nm and N(2) for sub- 
stitution into Eq. (J.9) to diterm&e exp;essions for 
pw,o), puwN m,o,a Quantities p, A, B, and 
N are given by Eqs: ?ydl? to (J.4) respectively. 

Similarly, we obtain Table J.2 for evaluation of p (1,LO) , 
p(l",l), and p(',l'l) by Eq. (J 15): . 
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r- 

I A&O) 

Table J.2. Evaluates of A(ly 
N(o,l) . and N("') for substi * 

mine expressions for p (l,l,O) 
Quantities p, A, B, and N are 
respectively. 

0) , A(‘Y1) 

tution int 
, pw,l) 
given by 

er- 

When Eqs. (J.2), (J.4), and the parameter values given in 
Table J.l are substituted into Eq. (J.g>, we obtain the 
expressions for p Gf,~,0) ) p(L2,0) , and P('~"~) given by 
Eqs. (6.15) to (6.17) respectively, and when Eqs. (J.2), (J.4), 
and the parameter values given in Table 5.2 are substituted 
into Eq. (J.l5), we obtain the expressions for p (l,l,O) 

p(l,o,l) , and p(Oyl,l) given by Eqs. (6.18) to (6.20) r:spec- 
tively. Since these derivatives are shown evaluated at the 
expected values of the parameters c2 o? 
shown over these parameters in Eqs. y~6.ff~)a~~ ~8!~O~~rk~~~er- 
more, we have used the fact shown by Eq. (6.74) that 

-:E {u.)=O 
uYP Uf YY 

(5.18) 

in the expressions of Eqs. (6.15) to (6.20). 
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APPENDIX K 

DERIVATION OF INPUT-RESPONSE RELATIONS FOR 

INSTANTANEOUS CROSS-SPECTRAL DENSITIES OF 

NONSTATIONARY STOCHASTIC PROCESSES 

Here, we derive input-response relations for instantaneous 
cross-spectral densities that are direct extensions of the 
results derived in Ref. 34. Let us define the instantaneous 
cross-correlation function of two real, generally nonstationary 
stochastic processes {xj(t)} and {x,(t)) as 

@ 
'jxk 

(-r,t> l E{xj(t - ;)xk(t + 5)). (K.1) 

When the two processes are identical - i.e., when j = k, and 
therefore Xj(t) = xk(t) - ax x (-r,t> is an even function of T 

j j 
as is immediately apparent from Eq. (K.l). However, when 
xj(t) # x,(t), ox x (-r,t> is not generally an even function 

j k 
of +r. The definition, Eq. (K.l), is a direct extension of 
the definition, Eq. (7), of Ref. 34. 

aJ 
'jXk 

(f,t) of the two processes Cxj(t) 

Fourier transform with respect to T of 

We define the instantaneous cross-spectral density 
1 and {xk(t )) as the 

- i.e., Q 
'jxk 

h,t> 

a (f&) 4 
I 

m@ (-r,t>e 
-i2nfT 

xjxk 
dT , 

-00 xjxk 
(K.2) 

which is a direct extension of the definition, Eq. (9a>, of 
Ref. 34. However, in the present case Cp 

'jxk 
(f,t) is not 

generally real and an even function of f as it is in the 
case where x.(t) = xk(t). 

4 
Let us further define the Fourier 

transform w1 h respect to t of @ 
'jXk 

(f,t) as 
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5 
xjXk 

(f,v) $ cp I 
03 

xjxk 
(f,t>e 

i27rvtdt 

-03 

which is a direct extension of Eq. (27) of Ref. 34. 

We may relate Cp 
xjxk 

(f,v) directly to the Fourier trans- 

forms of the sample functions x.(t) and xk(t). Substituting 
Eqs. (K.l) and (K.2) into Eq. (i.3) and interchanging the 

.nd integration, we have orders of expectation a 

5 
xjxk 

(f,v 
co 03 

=E 
I f xj 
--co -co 

(t- $)xk(t+ $)eBi2n(fT-vt)dTdt 

(K.3) 

Let us now transform to the new variables of integration 

hence, 
t, = t - $3 t* =t+;; 

t1+t2 
T = t,-t, , t = 2 ' 

(K.5) 

(K.6) 

where la(T,t)/a(tl,t,)l = 1. Substitution of Eqs. (K.5) and 
(K.6) into Eq. (K-4) and using 

dTdt = la(~,t)/a(t,,t,)ldtldt, = dtldt, , (K.7) 

we have after minor rearrangements 

coo3 
5 

XjXk 
(f,v) = E ff 

-i2nC(f- xj(tl)xk(t2)e +;-(f+ +,I 
dt,dt, 

--co--co 

co 

=E Xj(tl)e 

i2T(f+ $)t 03 
'dt 

-i2r(f- 
1 f 

xk(t2)e dt 
2 

XJ(f+ ;)Xk(f- 
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where we have defined 

I 

m 

Xj(f) 4 xj We -i27rftdt 

-03 

P 
Xk(f) = J xk(t Je -i27rft 

dt , 

(K.9d 

(K.9b) 

and where the superscript asterisk in Eq. (K.8) denotes the 
complex conjugate. Thus, from Eq. (K.8) we see that 5 

'jxk 
(f,v) 

can be expressed directly in terms of an expectation of the 
cross-products of the Fourier transforms of the sample func- 
tions of the two processes {xj(t)l and 

The Fourier mate to Eq. (K.2) is 

f 

a3 

@ 

'jxk 
h,t> = @ (f,t)ei2Tf'df 

-00 xjxk 

Cx,(t)). - 

Combining the evaluations of Eqs. (K.l) 
gives 

. (K.lO) 

and (K.lO) at T = 0 

d? 
xjxk 

(0,t) E ECxj(t)xk(t)I = 1 ax x (f,t)df , 
-co j k 

(K.ll) 

which is the extension of Eq. (12a) of Ref. 34 to instantaneous 
cross-spectral densities. For any time t, integration of the 
(complex) instantaneous cross-spectral density @ 

'jxk 
(f,M 

over all f gives the expected value of the product xj(t)xk(t) 
at that same instant of time t. 

Cross-spectra2 density input-response relations. Consider 
the response (y(t)} of a linear time-invariant system to an 
input process {x(t)). Let h(t) denote the unit impulse 
response of the system. For any input sample function x(t) 
we have 

210 



OD y(t) = 
f 

x(T)h(t-T)dT, (K.12) 
-00 

as in Eq. (l.lOb). Let H(f) denote the complex frequency response 
of the system as defined by Eq. (l.g), and let X(f) and Y(f) 
denote the Fourier transforms of x(t) and y(t) defined in the 
same manner as in Eq. (1.9). Then, it is well known [e.g., 
p. 57 of Ref. 291 that X(f), Y(f), and H(f) are related by the 
product 

Y(f) = X(f)H(f) . (K.13) 

Let (x.(t)) and ix 
and let iyj?'L)j and (yk 'c)) ? 

(t)] denote two different input processes 
denote the corresponding response 

processes. That is, each sample function from process (xj(t)) 
generates a response sample function by the relation 

co 
YjW = hj(~)xj(t-~)d~ 

and each sample function from 
response sample function 

, (K.14) 

&(t )I also generates a comparable 

y,(t) = J hk(T)xk(t-T)dT . 
-m 

(K.15) 

Impulse response functions hj(t) and hk(t) are potentially dif- 
ferent. The frequency domain counterparts of these input- 
response relationships are 

Yj(f) = Xj(f)Hj(f) (~.16) 

and 

yk(f) = Xk(f)Hk(f) . 

From Eqs. (K.16) and (K.17), we therefore have 

(K.17) 
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E{YJ(f+ ;)Yk(f- :)I = E{Xi(f+ $)Xk(f- z)]HJ(f+ $)Hk(f- F), (K-18) 

05 applying the definition, Eq. (~.8), to input processes, 
output processes, and system complex frequency response functions, 
we have 

6 
'jYk 

(f,v) = 5 
xjxk 

(f,v)zh h cf,d , 
j k 

(K.19) 

where no expectation operation is required in defining gh h (f,v) 
j k 

because hj(t), hk(t) and their transforms are here assumed to be 
deterministic. 

Equation (K.19) expresses the transformed instantaneous 
cross-spectral density of the response processes {y.(t)} and 
(yk(t)l as the product of the transformed instantan$ous cross- 
spectra of the input processes and system impulse response 
functions. Hence, from the Fourier mate to Eq. (K.3), 

0 
-i27rvt 

'jxk 
(f,t) = 5 

f 

a3 

-co xjxk 
(f,v)e dv, (K.20) 

and the analogous relations for the response cross-spectra system 
impulse response cross-spectra, we have by applying the con- 
volution theorem to Eq. (K.19): 

(3 
'jYk 

(f,t) = Q 
f 

m 

'jxk 
(f,t-u)Qh h (f,u)du . 

-Co j k 
(K.21) 

Equations (K.19) and (K.21) are the instantaneous cross-spectral 
density input-response relations that are direct extensions of 
the instantaneous auto-spectral density input-response relations, 
Eqs. (39) and (40) of Ref. 34. 

Reduction to the ease of stationary input processes. Let 
us now consider the case where C$ 

'jXk 
(T,t) defined by Eq. (K.l) 
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is independent of t - i.e., is dependent only on the time dif- 
ference T. In this case, we see from Eq. (K.2) that @ 

xjxk 
(VA 

also is independent of t. Denote this independence by replac- 
ing t by a vertically centered dot. It then follows immediately 
from Eq. (K.21) that @ 

yjyk 
(f,t) also is independent of t, which 

we also shall denote bv a vertically centered dot. Thus, when 
(a (-r,t> is independent of t, Eq.- (K.21) reduces to - 

xjxk 

cp 
'jYk 

(f,= )=@ (f,- 
'jxk 

) 
J 

Qh h (f’,u)du . 

-co j k 

However, from the counterpart of Eq. (K-3) app 

'h h (f,v) 4 Lh h (f,t)ei2Tvtdt 
j k -Co j k 

we have by sett ing v = 0 in Eq. 

r" 
1 

Qh h (f,t)dt = gh h (f,O) 
--m j k j k 

= H;(f)Hk(f) 

9 

(K.231, 

(K.22) 

ied to h.h 
J k 

- i.e., 

(K.23) 

(K.24) 

where the second line follows directly from Eq. (K.8) applied 
to hjhk rather than XjXk. Combining Eqs. (K.22) and (K.24) 
yields 

@ 
'jYk 

(f,*) = @ 
'jXk 

(f,*)Hj(f)Hk(f) . (K.25) 

Finally, by applying Eq. (K.ll) to the response YjYk, we have 
from Eqs. (K.25) f or stationary input processes, 
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co 

E{yj(t)yk(t)j = ax x (f,‘)Hf(f)Hk(f)df > (K.26) 
-a, j k 

which is valid whenever the instantaneous input cross-correlation 
function, Eq. (K.l), is independent of t. 
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